搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自准直效应的光子晶体异质结偏振分束器

左依凡 李培丽 栾开智 王磊

基于自准直效应的光子晶体异质结偏振分束器

左依凡, 李培丽, 栾开智, 王磊
PDF
导出引用
导出核心图
  • 基于光子晶体的自准直效应和禁带特性,提出了一种具有非正交异质结结构的光子晶体偏振分束器.无需引入缺陷或波导,可使光波在该结构中准直无发散地传输并实现分束功能,对制造工艺的要求大大降低.利用Rsoft软件,结合平面波展开法和二维时域有限差分法,对提出的偏振分束器进行了仿真研究.结果表明,该偏振分束器在一个较大的频率范围f=0.2750.285(a/)内可实现横电(TE)和横磁(TM)模的大角度偏振分离,TE和TM模的透过率均在88%以上,偏振消光比分别大于26.57 dB和17.50 dB.该结构可应用到太赫兹波段的传输系统中,a=26 m,尺寸大小为572 m546 m,在9195 m波长范围内可实现TE和TM模的分离.利用该结构可设计用于光通信系统(n=3.48)的偏振分束器,a=426.25 nm,结构仅为9.38 m8.95 m.本方案结构简单,易于集成,有望在集成光路的发展中发挥重要作用.
      通信作者: 李培丽, lipl@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61255067)资助的课题.
    [1]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Mart J 2009 Appl. Opt. 48 2693

    [2]

    Lee B, Jung J, Han K J, Yong W L 2003 Opt. Express 11 3359

    [3]

    Edition S 1995 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University Press)

    [4]

    Shen X P, Han K, Li H P, Shen Y F, Wang Z Y 2008 Acta Phys. Sin. 57 1737 (in Chinese) [沈晓鹏, 韩奎, 李海鹏, 沈义峰, 王子煜 2008 物理学报 57 1737]

    [5]

    Sun L L, Shen Y F, Wang J, Zhou J, Zhang Y, Tang G 2010 Acta Photon. Sin. 39 1795 (in Chinese) [孙露露, 沈义峰, 王娟, 周杰, 张园, 唐刚 2010 光子学报 39 1795]

    [6]

    Guo H, Wu P, Yu T B, Liao Q H, Liu N H, Huang Y Z 2010 Acta Phys. Sin. 59 5547 (in Chinese) [郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴 2010 物理学报 59 5547]

    [7]

    Zhang X, Liao Q H, Chen S W, Hu P, Yu T B, Liu N H 2011 Acta Phys. Sin. 60 104215 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 物理学报 60 104215]

    [8]

    Zhou F, Fei H M, Chen Z H, Liu X, Yang Y B 2013 Laser Optoelectr. Prog. 50 158 (in Chinese) [周飞, 费宏明, 陈智辉, 刘欣, 杨毅彪 2013 激光与光电子学进展 50 158]

    [9]

    Bagci F, Can S, Akaoglu B, Yilmaz A E 2014 Radioengineering 23 1033

    [10]

    Noori M, Soroosh M, Baghban H 2017 J. Mod. Opt. 64 491

    [11]

    Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T 1999 Appl. Phys. Lett. 74 1370

    [12]

    Witzens J, Loncar M, Scherer A 2002 IEEE J. Sel. Top. Quant. 8 1246

    [13]

    Chen C, Sharkawy A, Pustai D, Shi S, Prather D 2003 Opt. Express 11 3153

    [14]

    Yu X F, Fan S H 2003 Appl. Phys. Lett. 83 3251

    [15]

    Li Y Y, Gu P F, Li M Y, Zhang J L, Liu X 2006 Acta Phys. Sin. 55 2596 (in Chinese) [厉以宇, 顾培夫, 李明宇, 张锦龙, 刘旭 2006 物理学报 55 2596]

    [16]

    Tong X, Han K, Shen X P, Wu Q H, Zhou F, Ge Y 2011 Acta Phys. Sin. 60 064217 (in Chinese) [童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳 2011 物理学报 60 064217]

    [17]

    Liao W Y, Zhang Y X, Chen W H 2015 Acta Phys. Sin. 64 064209 (in Chinese) [梁文耀, 张玉霞, 陈武喝 2015 物理学报 64 064209]

    [18]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [19]

    Chen H, Xu Y, He J, Hong Z 2009 Opt. Commun. 282 3626

  • [1]

    Galan J V, Sanchis P, Garcia J, Blasco J, Martinez A, Mart J 2009 Appl. Opt. 48 2693

    [2]

    Lee B, Jung J, Han K J, Yong W L 2003 Opt. Express 11 3359

    [3]

    Edition S 1995 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton University Press)

    [4]

    Shen X P, Han K, Li H P, Shen Y F, Wang Z Y 2008 Acta Phys. Sin. 57 1737 (in Chinese) [沈晓鹏, 韩奎, 李海鹏, 沈义峰, 王子煜 2008 物理学报 57 1737]

    [5]

    Sun L L, Shen Y F, Wang J, Zhou J, Zhang Y, Tang G 2010 Acta Photon. Sin. 39 1795 (in Chinese) [孙露露, 沈义峰, 王娟, 周杰, 张园, 唐刚 2010 光子学报 39 1795]

    [6]

    Guo H, Wu P, Yu T B, Liao Q H, Liu N H, Huang Y Z 2010 Acta Phys. Sin. 59 5547 (in Chinese) [郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴 2010 物理学报 59 5547]

    [7]

    Zhang X, Liao Q H, Chen S W, Hu P, Yu T B, Liu N H 2011 Acta Phys. Sin. 60 104215 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 物理学报 60 104215]

    [8]

    Zhou F, Fei H M, Chen Z H, Liu X, Yang Y B 2013 Laser Optoelectr. Prog. 50 158 (in Chinese) [周飞, 费宏明, 陈智辉, 刘欣, 杨毅彪 2013 激光与光电子学进展 50 158]

    [9]

    Bagci F, Can S, Akaoglu B, Yilmaz A E 2014 Radioengineering 23 1033

    [10]

    Noori M, Soroosh M, Baghban H 2017 J. Mod. Opt. 64 491

    [11]

    Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T 1999 Appl. Phys. Lett. 74 1370

    [12]

    Witzens J, Loncar M, Scherer A 2002 IEEE J. Sel. Top. Quant. 8 1246

    [13]

    Chen C, Sharkawy A, Pustai D, Shi S, Prather D 2003 Opt. Express 11 3153

    [14]

    Yu X F, Fan S H 2003 Appl. Phys. Lett. 83 3251

    [15]

    Li Y Y, Gu P F, Li M Y, Zhang J L, Liu X 2006 Acta Phys. Sin. 55 2596 (in Chinese) [厉以宇, 顾培夫, 李明宇, 张锦龙, 刘旭 2006 物理学报 55 2596]

    [16]

    Tong X, Han K, Shen X P, Wu Q H, Zhou F, Ge Y 2011 Acta Phys. Sin. 60 064217 (in Chinese) [童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳 2011 物理学报 60 064217]

    [17]

    Liao W Y, Zhang Y X, Chen W H 2015 Acta Phys. Sin. 64 064209 (in Chinese) [梁文耀, 张玉霞, 陈武喝 2015 物理学报 64 064209]

    [18]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [19]

    Chen H, Xu Y, He J, Hong Z 2009 Opt. Commun. 282 3626

  • [1] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [2] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [3] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [4] 梁晋洁, 高宁, 李玉红. 表面效应对铁\begin{document}${\left\langle 100 \right\rangle} $\end{document}间隙型位错环的影响. 物理学报, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [5] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [6] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [7] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [8] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [9] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [10] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • 引用本文:
    Citation:
计量
  • 文章访问数:  231
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-10
  • 修回日期:  2017-10-02
  • 刊出日期:  2018-02-05

基于自准直效应的光子晶体异质结偏振分束器

  • 1. 南京邮电大学光电工程学院, 南京 210023
  • 通信作者: 李培丽, lipl@njupt.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61255067)资助的课题.

摘要: 基于光子晶体的自准直效应和禁带特性,提出了一种具有非正交异质结结构的光子晶体偏振分束器.无需引入缺陷或波导,可使光波在该结构中准直无发散地传输并实现分束功能,对制造工艺的要求大大降低.利用Rsoft软件,结合平面波展开法和二维时域有限差分法,对提出的偏振分束器进行了仿真研究.结果表明,该偏振分束器在一个较大的频率范围f=0.2750.285(a/)内可实现横电(TE)和横磁(TM)模的大角度偏振分离,TE和TM模的透过率均在88%以上,偏振消光比分别大于26.57 dB和17.50 dB.该结构可应用到太赫兹波段的传输系统中,a=26 m,尺寸大小为572 m546 m,在9195 m波长范围内可实现TE和TM模的分离.利用该结构可设计用于光通信系统(n=3.48)的偏振分束器,a=426.25 nm,结构仅为9.38 m8.95 m.本方案结构简单,易于集成,有望在集成光路的发展中发挥重要作用.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回