搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最大似然的单通道交叠激光微多普勒信号参数分离估计

郭力仁 胡以华 王云鹏 徐世龙

基于最大似然的单通道交叠激光微多普勒信号参数分离估计

郭力仁, 胡以华, 王云鹏, 徐世龙
PDF
导出引用
导出核心图
  • 利用激光对目标微弱振动进行探测有利于获得明显的微多普勒效应,这为精确估计目标微动特征参数,实现对目标的分类和精细识别提供了可能.但对于多散射点或多目标激光探测,信号为单通道多分量微动混合的形式,而且补偿目标主体运动后,数值上相近的微动参数还会导致信号在时频域存在严重的交叠.为从这类混合信号中精确估计各分量的微动参数,本文提出了基于最大似然框架的参数分离估计方法.利用精细化扫描的奇异值比谱法从混合信号中获得目标微动频率,并得到各分量的幅值比信息.推导了微动参数最大似然估计的解析表达形式,根据激光微多普勒信号的特点从频谱能量分布的角度重新设计了似然函数,解决了传统似然函数在激光微动信号中出现的高度非线性问题,降低了初始化的要求,提高了抗噪性能,并采用马尔可夫-蒙特卡罗方法具体实现了参数的估计.在微动参数得到估计的基础上给出了信号的幅值和初相的估计方法.用本文方法对仿真和实验数据进行处理,得到了接近克拉美罗下界的估计结果,验证了方法的有效性.与传统非参数化估计方法的对比结果体现了所提方法对混合微动参数精确估计上的优势.
      通信作者: 胡以华, skl_hyh@163.com
    • 基金项目: 国家自然科学基金(批准号:61271353)资助的课题.
    [1]

    Chen V C 2006 IEEE Trans. Aerosp. Electron. Syst. 42 2

    [2]

    Jiang Y 2014 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [姜悦 2014 博士学位论文 (西安: 西安电子科技大学)]

    [3]

    Yang J, Liu C, Wang Y 2015 IEEE Trans. Geosci. Remote Sens. 53 920

    [4]

    Chen V C 2011 The Micro-Doppler Effect in Radar (Fitchburg: Artech House) pp15-17

    [5]

    Wang T, Tong C M, Li X M 2015 Acta Phys. Sin. 64 058401 (in Chinese) [王童, 童创明, 李西敏 2015 物理学报 64 058401]

    [6]

    Hong L, Dai F, Wang X 2016 IEEE Geosci. Remote Sens. Lett. 13 1349

    [7]

    Zhu H, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 058401 (in Chinese) [朱航, 张淑宁, 赵惠昌 2014 物理学报 63 058401]

    [8]

    Simeunovic M, Popovic-Bugarin V, Djurovic I 2017 IEEE Trans. Aerosp. Electron. Syst. 53 1273

    [9]

    Tan R, Lim H S, Smits A B 2016 IEEE Region 10 Conference, TENCON, 2016 p730

    [10]

    Chen G F 2014 Ph. D. Dissertation (Xian: Xidian University) (in Chinese) [陈广锋 2014 博士学位论文 (西安: 西安电子科技大学)]

    [11]

    Zhao M M, Zhang Q, Luo Y 2017 IEEE Geosci. Remote Sens. Lett. 14 174

    [12]

    Yang Q, Deng B, Wang H 2014 EURASIP J. Wirel. Comm. 1 61

    [13]

    Huo K, You P, Jiang W D 2010 Jounal of Electronics Information Technology 32 355(in Chinese) [霍凯, 游鹏, 姜卫东 2010 电子与信息学报 32 355]

    [14]

    Deng D H, Zhang Q, Luo Y 2013 Acta Electronica Sinica 41 2339(in Chinese) [邓冬虎, 张群, 罗迎 2013 电子学报 41 2339]

    [15]

    Zhu H, Zhang S N, Zhao H C 2015 Digital Signal Process. 40 224

    [16]

    Sun Z G, Chen J, Cao X 2016 J.Syst. Engin. Electron. 10 1973

    [17]

    Zhang S N, Zhao H C, Xiong G, Guo C Y 2014 Acta Phys. Sin. 63 158401 (in Chinese) [张淑宁, 赵惠昌, 熊刚, 郭长勇 2014 物理学报 63 158401]

    [18]

    Sharafinezhad S R, Alizadeh H, Eshghi M 2014 Elect. Eng. 22nd Iranian Conference on IEEE Iran, 2014 p1673

    [19]

    Wang Y, Wu X, Li W 2016 Neurocomputing 171 48

    [20]

    Yuan B, Chen Z, Xu S 2014 IEEE Trans. Geosci. Remote Sens. 52 1285

    [21]

    Setlur P, Fauzia A, Moeness A 2011 IET Signal Proc. 5 194

    [22]

    Ye Z F 2009 Statistical Signal Processing (Hefei: China University of Science and Technology Press) pp241-246 (in Chinese) [叶中付 2009 统计信号处理(合肥: 中国科学技术大学出版社) 第241-246页]

    [23]

    Guo L R, Hu Y H, Wang Y P 2016 Proceedings of the SPIE, Photonics Asia Beijng, China, October 11-14, 2016 p21

    [24]

    Hu Y, Guo L, Dong X 2016 Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS) Fourth Int. Conf. IEEE Shanghai, China, November 2-4, 2016 p264

    [25]

    Hou Z F, Yang J, Zhang X 2011 Journal Wuhan University of Technology 1 142 (in Chinese) [侯者非, 杨杰, 张雪 2011 武汉理工大学学报 1 142]

    [26]

    Kay S M 2006 Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall PTR: Upper Saddle River) pp142-150

    [27]

    Li j, Zhao Y J, Li D H 2014 Acta Phys. Sin. 63 130701 (in Chinese) [李晶, 赵拥军, 李冬海 2014 物理学报 63 130701]

    [28]

    Guo L R, Hu Y H, Wang Y P 2017 Infrared and Laser Engineering 46 17 (in Chinese) [郭力仁, 胡以华, 王云鹏 2017 红外与激光工程 46 17]

  • [1]

    Chen V C 2006 IEEE Trans. Aerosp. Electron. Syst. 42 2

    [2]

    Jiang Y 2014 Ph. D. Dissertation (Xi'an: Xidian University) (in Chinese) [姜悦 2014 博士学位论文 (西安: 西安电子科技大学)]

    [3]

    Yang J, Liu C, Wang Y 2015 IEEE Trans. Geosci. Remote Sens. 53 920

    [4]

    Chen V C 2011 The Micro-Doppler Effect in Radar (Fitchburg: Artech House) pp15-17

    [5]

    Wang T, Tong C M, Li X M 2015 Acta Phys. Sin. 64 058401 (in Chinese) [王童, 童创明, 李西敏 2015 物理学报 64 058401]

    [6]

    Hong L, Dai F, Wang X 2016 IEEE Geosci. Remote Sens. Lett. 13 1349

    [7]

    Zhu H, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 058401 (in Chinese) [朱航, 张淑宁, 赵惠昌 2014 物理学报 63 058401]

    [8]

    Simeunovic M, Popovic-Bugarin V, Djurovic I 2017 IEEE Trans. Aerosp. Electron. Syst. 53 1273

    [9]

    Tan R, Lim H S, Smits A B 2016 IEEE Region 10 Conference, TENCON, 2016 p730

    [10]

    Chen G F 2014 Ph. D. Dissertation (Xian: Xidian University) (in Chinese) [陈广锋 2014 博士学位论文 (西安: 西安电子科技大学)]

    [11]

    Zhao M M, Zhang Q, Luo Y 2017 IEEE Geosci. Remote Sens. Lett. 14 174

    [12]

    Yang Q, Deng B, Wang H 2014 EURASIP J. Wirel. Comm. 1 61

    [13]

    Huo K, You P, Jiang W D 2010 Jounal of Electronics Information Technology 32 355(in Chinese) [霍凯, 游鹏, 姜卫东 2010 电子与信息学报 32 355]

    [14]

    Deng D H, Zhang Q, Luo Y 2013 Acta Electronica Sinica 41 2339(in Chinese) [邓冬虎, 张群, 罗迎 2013 电子学报 41 2339]

    [15]

    Zhu H, Zhang S N, Zhao H C 2015 Digital Signal Process. 40 224

    [16]

    Sun Z G, Chen J, Cao X 2016 J.Syst. Engin. Electron. 10 1973

    [17]

    Zhang S N, Zhao H C, Xiong G, Guo C Y 2014 Acta Phys. Sin. 63 158401 (in Chinese) [张淑宁, 赵惠昌, 熊刚, 郭长勇 2014 物理学报 63 158401]

    [18]

    Sharafinezhad S R, Alizadeh H, Eshghi M 2014 Elect. Eng. 22nd Iranian Conference on IEEE Iran, 2014 p1673

    [19]

    Wang Y, Wu X, Li W 2016 Neurocomputing 171 48

    [20]

    Yuan B, Chen Z, Xu S 2014 IEEE Trans. Geosci. Remote Sens. 52 1285

    [21]

    Setlur P, Fauzia A, Moeness A 2011 IET Signal Proc. 5 194

    [22]

    Ye Z F 2009 Statistical Signal Processing (Hefei: China University of Science and Technology Press) pp241-246 (in Chinese) [叶中付 2009 统计信号处理(合肥: 中国科学技术大学出版社) 第241-246页]

    [23]

    Guo L R, Hu Y H, Wang Y P 2016 Proceedings of the SPIE, Photonics Asia Beijng, China, October 11-14, 2016 p21

    [24]

    Hu Y, Guo L, Dong X 2016 Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS) Fourth Int. Conf. IEEE Shanghai, China, November 2-4, 2016 p264

    [25]

    Hou Z F, Yang J, Zhang X 2011 Journal Wuhan University of Technology 1 142 (in Chinese) [侯者非, 杨杰, 张雪 2011 武汉理工大学学报 1 142]

    [26]

    Kay S M 2006 Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice Hall PTR: Upper Saddle River) pp142-150

    [27]

    Li j, Zhao Y J, Li D H 2014 Acta Phys. Sin. 63 130701 (in Chinese) [李晶, 赵拥军, 李冬海 2014 物理学报 63 130701]

    [28]

    Guo L R, Hu Y H, Wang Y P 2017 Infrared and Laser Engineering 46 17 (in Chinese) [郭力仁, 胡以华, 王云鹏 2017 红外与激光工程 46 17]

  • [1] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [2] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [3] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [4] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [5] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [6] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [7] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
  • 引用本文:
    Citation:
计量
  • 文章访问数:  172
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-06-05

基于最大似然的单通道交叠激光微多普勒信号参数分离估计

  • 1. 国防科技大学电子对抗学院, 脉冲功率激光技术国家重点实验室, 合肥 230037;
  • 2. 国防科技大学电子对抗学院, 电子制约技术安徽省重点实验室, 合肥 230037
  • 通信作者: 胡以华, skl_hyh@163.com
    基金项目: 

    国家自然科学基金(批准号:61271353)资助的课题.

摘要: 利用激光对目标微弱振动进行探测有利于获得明显的微多普勒效应,这为精确估计目标微动特征参数,实现对目标的分类和精细识别提供了可能.但对于多散射点或多目标激光探测,信号为单通道多分量微动混合的形式,而且补偿目标主体运动后,数值上相近的微动参数还会导致信号在时频域存在严重的交叠.为从这类混合信号中精确估计各分量的微动参数,本文提出了基于最大似然框架的参数分离估计方法.利用精细化扫描的奇异值比谱法从混合信号中获得目标微动频率,并得到各分量的幅值比信息.推导了微动参数最大似然估计的解析表达形式,根据激光微多普勒信号的特点从频谱能量分布的角度重新设计了似然函数,解决了传统似然函数在激光微动信号中出现的高度非线性问题,降低了初始化的要求,提高了抗噪性能,并采用马尔可夫-蒙特卡罗方法具体实现了参数的估计.在微动参数得到估计的基础上给出了信号的幅值和初相的估计方法.用本文方法对仿真和实验数据进行处理,得到了接近克拉美罗下界的估计结果,验证了方法的有效性.与传统非参数化估计方法的对比结果体现了所提方法对混合微动参数精确估计上的优势.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回