搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米颗粒阵列的表面增强拉曼散射效应研究

程自强 石海泉 余萍 刘志敏

银纳米颗粒阵列的表面增强拉曼散射效应研究

程自强, 石海泉, 余萍, 刘志敏
PDF
导出引用
导出核心图
  • 利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1,4-苯二硫醇(1,4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10-13 mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底.
    [1]

    Tong L M, Xu H X (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [2]

    Shao L, Ruan Q F, Wang J F, Lin H Q (in Chinese) [邵磊, 阮琦锋, 王建方, 林海青 2014 物理 43 290]

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357

    [4]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952

    [5]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2010 Nature 453 757

    [6]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    Xu H, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [10]

    Tong L, Xu H, Kll M 2014 MRS Bull. 39 163

    [11]

    Hller R P M, Dulle M, Thom S, Mayer M, Steiner A M, Frster S, Fery A, Kuttner C, Chanana M 2016 ACS Nano 10 5740

    [12]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391

    [13]

    Mahmoud M A, El-Sayed M A 2009 Nano Lett. 9 3025

    [14]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, de Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [15]

    Wang H H, Liu C Y, Wu S B, Liu N W, Peng C Y, Chan T H, Hsu C F, Wang J K, Wang Y L 2006 Adv. Mater. 18 491

    [16]

    Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C 2010 Adv. Mater. 22 4136

    [17]

    Ozel T, Ashley M J, Bourret G R, Ross M B, Schatz G C, Mirkin C A 2015 Nano Lett. 15 5273

    [18]

    Mcphillips J, Murphy A, Jonsson M P, Hendren W R, Atkinson R, Hk F, Zayats A V, Pollard R J 2010 ACS Nano 4 2210

    [19]

    Cheng Z Q, Nan F, Yang D J, Zhong Y T, Ma L, Hao Z H, Zhou L, Wang Q Q 2015 Nanoscale 7 1463

    [20]

    Lee S J, Guan Z, Xu H, Moskovits M 2007 J. Phys. Chem. C 111 17985

    [21]

    Qiu T, Zhang W, Lang X, Zhou Y, Cui T, Chu P K 2009 Small 5 2333

    [22]

    Gu G H, Suh J S 2010 J. Phys. Chem. C 114 7258

    [23]

    Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B, Fang Z Y 2016 Adv. Funct. Mater. 26 6394

    [24]

    Zhou Z K, Xue J C, Zheng Z B, Li J H, Ke Y L, Yu Y, Han J B, Xie W G, Deng S Z, Chen H J, Wang X H 2015 Nanoscale 7 15392

    [25]

    Zhou Z K, Peng X N, Yang Z J, Zhang Z S, Li M, Su X R, Zhang Q, Shan X Y, Wang Q Q, Zhang Z Y 2011 Nano Lett. 11 49

    [26]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) p350

    [27]

    Wan L, Zheng R, Xiang J 2017 Vib. Spectrosc. 90 56

    [28]

    McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122

    [29]

    Shao Q, Que R H, Shao M W, Cheng L, Lee S T 2012 Adv. Funct. Mater. 22 2067

  • [1]

    Tong L M, Xu H X (in Chinese) [童廉明, 徐红星 2012 物理 41 582]

    [2]

    Shao L, Ruan Q F, Wang J F, Lin H Q (in Chinese) [邵磊, 阮琦锋, 王建方, 林海青 2014 物理 43 290]

    [3]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357

    [4]

    Hatab N A, Hsueh C H, Gaddis A L, Retterer S T, Li J H, Eres G, Zhang Z, Gu B 2010 Nano Lett. 10 4952

    [5]

    Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2010 Nature 453 757

    [6]

    Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q 2016 Nat. Rev. Mater. 1 16021

    [7]

    Nie S, Emory S R 1997 Science 275 1102

    [8]

    Xu H, Bjerneld E J, Kll M, Brjesson L 1999 Phys. Rev. Lett. 83 4357

    [9]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60

    [10]

    Tong L, Xu H, Kll M 2014 MRS Bull. 39 163

    [11]

    Hller R P M, Dulle M, Thom S, Mayer M, Steiner A M, Frster S, Fery A, Kuttner C, Chanana M 2016 ACS Nano 10 5740

    [12]

    Wang Y, Yan B, Chen L 2013 Chem. Rev. 113 1391

    [13]

    Mahmoud M A, El-Sayed M A 2009 Nano Lett. 9 3025

    [14]

    Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria R P, Krahne R, Rondanina E, Leoncini M, Liberale C, de Angelis F, Di Fabrizio E 2014 Adv. Mater. 26 2353

    [15]

    Wang H H, Liu C Y, Wu S B, Liu N W, Peng C Y, Chan T H, Hsu C F, Wang J K, Wang Y L 2006 Adv. Mater. 18 491

    [16]

    Huang Z, Meng G, Huang Q, Yang Y, Zhu C, Tang C 2010 Adv. Mater. 22 4136

    [17]

    Ozel T, Ashley M J, Bourret G R, Ross M B, Schatz G C, Mirkin C A 2015 Nano Lett. 15 5273

    [18]

    Mcphillips J, Murphy A, Jonsson M P, Hendren W R, Atkinson R, Hk F, Zayats A V, Pollard R J 2010 ACS Nano 4 2210

    [19]

    Cheng Z Q, Nan F, Yang D J, Zhong Y T, Ma L, Hao Z H, Zhou L, Wang Q Q 2015 Nanoscale 7 1463

    [20]

    Lee S J, Guan Z, Xu H, Moskovits M 2007 J. Phys. Chem. C 111 17985

    [21]

    Qiu T, Zhang W, Lang X, Zhou Y, Cui T, Chu P K 2009 Small 5 2333

    [22]

    Gu G H, Suh J S 2010 J. Phys. Chem. C 114 7258

    [23]

    Yu Y, Ji Z H, Zu S, Du B W, Kang Y M, Li Z W, Zhou Z K, Shi K B, Fang Z Y 2016 Adv. Funct. Mater. 26 6394

    [24]

    Zhou Z K, Xue J C, Zheng Z B, Li J H, Ke Y L, Yu Y, Han J B, Xie W G, Deng S Z, Chen H J, Wang X H 2015 Nanoscale 7 15392

    [25]

    Zhou Z K, Peng X N, Yang Z J, Zhang Z S, Li M, Su X R, Zhang Q, Shan X Y, Wang Q Q, Zhang Z Y 2011 Nano Lett. 11 49

    [26]

    Palik E D 1985 Handbook of Optical Constants of Solids (New York:Academic Press) p350

    [27]

    Wan L, Zheng R, Xiang J 2017 Vib. Spectrosc. 90 56

    [28]

    McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122

    [29]

    Shao Q, Que R H, Shao M W, Cheng L, Lee S T 2012 Adv. Funct. Mater. 22 2067

  • [1] 黄茜, 曹丽冉, 孙建, 张晓丹, 耿卫东, 熊绍珍, 赵颖, 王京. 纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究. 物理学报, 2009, 58(3): 1980-1986. doi: 10.7498/aps.58.1980
    [2] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [3] 汤建, 刘爱萍, 李培刚, 沈静琴, 唐为华. 界面自组装的金/氧化石墨烯复合材料的表面增强拉曼散射行为研究. 物理学报, 2014, 63(10): 107801. doi: 10.7498/aps.63.107801
    [4] 王向贤, 白雪琳, 庞志远, 杨华, 祁云平, 温晓镭. 聚甲基丙烯酸甲酯间隔的金纳米立方体与金膜复合结构的表面增强拉曼散射研究. 物理学报, 2019, 68(3): 037301. doi: 10.7498/aps.68.20190054
    [5] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [6] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [7] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [8] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [9] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [10] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [11] 王垒, 蔡卫, 谭信辉, 向吟啸, 张心正, 许京军. 截面形状对快电子激发纳米双线表面等离激元的影响. 物理学报, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
    [12] 闫红丹, Peter Lemmens, Johannes Ahrens, Martin Bröring, Sven Burger, Winfried Daum, Gerhard Lilienkamp, Sandra Korte, Aidin Lak, Meinhard Schilling. 基于表面等离子体耦合的高密度金纳米线阵列. 物理学报, 2012, 61(23): 237105. doi: 10.7498/aps.61.237105
    [13] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [14] 黄茜, 熊绍珍, 赵颖, 张晓丹. 表面等离子激元非线性表面增强拉曼散射效应. 物理学报, 2012, 61(15): 157801. doi: 10.7498/aps.61.157801
    [15] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用. 物理学报, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [16] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [17] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [18] 郭旭东, 唐军, 刘文耀, 郭浩, 房国成, 赵苗苗, 王磊, 夏美晶, 刘俊. 锥柱型光纤探针在表面增强拉曼散射方面的应用. 物理学报, 2017, 66(4): 044208. doi: 10.7498/aps.66.044208
    [19] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [20] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
  • 引用本文:
    Citation:
计量
  • 文章访问数:  430
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-11
  • 修回日期:  2018-07-13
  • 刊出日期:  2018-10-05

银纳米颗粒阵列的表面增强拉曼散射效应研究

    基金项目: 

    江西省教育厅基金项目(批准号:GJJ160532)、江西省百人远航工程人才项目(批准号:2017-91)和江西省青年教师出国访学项目(批准号:2016-109)资助的课题.

摘要: 利用具有高密度拉曼热点的金属纳米结构作为表面增强拉曼散射(SERS)基底,可以显著增强吸附分子的拉曼信号.本文通过阳极氧化铝模板辅助电化学法沉积制备了高密度银(Ag)纳米颗粒阵列;利用扫描电子显微镜和反射谱表征了样品的结构形貌和表面等离激元特性;用1,4-苯二硫醇(1,4-BDT)为拉曼探针分子,研究了Ag纳米颗粒阵列的SERS效应.通过优化沉积时间,制备出高SERS探测灵敏度的Ag纳米颗粒阵列,检测极限可达10-13 mol/L;时域有限差分法模拟结果证实了纳米颗粒间存在强的等离激元耦合作用,且发现纳米颗粒底端的局域场增强更大.研究结果表明Ag纳米颗粒阵列可作为高效的SERS基底.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回