搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单光子调制频谱用于量子点荧光寿命动力学的研究

张强强 胡建勇 景明勇 李斌 秦成兵 李耀 肖连团 贾锁堂

单光子调制频谱用于量子点荧光寿命动力学的研究

张强强, 胡建勇, 景明勇, 李斌, 秦成兵, 李耀, 肖连团, 贾锁堂
PDF
导出引用
导出核心图
  • 本文开展了基于单光子调制频谱测量量子点荧光寿命动力学特性的研究.在脉冲激光激发下,对探测到的量子点单光子荧光信号进行频谱分析以获得荧光调制频谱,研究发现特征频谱信号幅值与荧光寿命之间存在确定的非线性对应关系.这种单光子调制频谱方法能有效消除背景噪声和单光子探测器暗计数的影响,用于分析量子点荧光寿命动力学特性时在准确度以及时间分辨率方面都较目前普遍采用的荧光衰减曲线寿命拟合方法呈现出明显优势:当涨落误差为5%时,寿命测量准确度提高了一个数量级;当涨落误差和偏离误差均为5%时,对动力学测量效率以及时间分辨率提高了四倍以上.因此单光子调制频谱可以作为获取量子点在短时间尺度内激发态动力学信息的一种有效技术手段.
    [1]

    Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Kilmov V I 2016 Chem. Rev. 116 10513

    [2]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [3]

    Kim M R, Ma D L 2015 J. Phys. Chem. Lett. 6 85

    [4]

    Bae W K, Park Y S, Lim J, Lee D G, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [5]

    Huang Q Q, Pan J Y, Zhang Y N, Chen J, Tao Z, He C, Zhou K F, Tu Y, Lei W 2016 Opt. Express 24 25955

    [6]

    Sukhovatkin V, Hinds S, Brzozowski L, Sargent E H 2009 Science 324 1542

    [7]

    Fisher B, Caruge J M, Zehnder D, Bawendi M 2005 Phys. Rev. Lett. 94 087403

    [8]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [9]

    Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314

    [10]

    Chen Q G, Zhou T Y, He C Y, Jiang Y Q, Chen X 2011 Anal. Methods 3 1471

    [11]

    Fan Y Y, Liu H L, Han R C, Huang L, Shi H, Sha Y L, Jiang Y Q 2015 Sci. Rep. 5 9908

    [12]

    Welsher K, Yang H 2014 Nat. Nanotechnol. 9 198

    [13]

    Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404

    [14]

    Yuan G C, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397

    [15]

    Fisher B R, Eisler H J, Stott N E, Bawendi M G 2004 J. Phys. Chem. B 108 143

    [16]

    Schlegel G, Bohnenberger J, Potapova I, Mews A 2002 Phys. Rev. Lett. 88 137401

    [17]

    Schmidt R, Krasselt C, Gohler C, von Borczyskowski C 2014 ACS Nano 8 3506

    [18]

    Zhang K, Chang H Y, Fu A H, Alivisatos A P, Yang H 2006 Nano Lett. 6 843

    [19]

    Htoon H, Hollingsworth J A, Dickerson R, Klimov V I 2003 Phys. Rev. Lett. 91 227401

    [20]

    Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366

    [21]

    Li Z J, Zhang G F, Li B, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Appl. Phys. Lett. 111 153106

    [22]

    Yang C G, Zhang G F, Feng L H, Li B, Li Z J, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2018 Opt. Express 26 11889

    [23]

    Zang H D, Routh P K, Huang Y, Chen J S, Sutter E, Sutter P, Cotlet M 2016 ACS Nano 10 4790

    [24]

    Rusimova K R, Purkiss R M, Howes R, Lee F, Crampin S, Sloan P A 2018 Science 361 1012

    [25]

    Li B, Zhang G F, Yang C G, Li Z J, Chen R Y, Qin C B, Gao Y, Huang H, Xiao L T, Jia S T 2018 Opt. Express 26 4674

    [26]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144

    [27]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24

    [28]

    Mobli M, Hoch J C 2014 Prog. Nucl. Magn. Reson. Spectrosc. 83 21

    [29]

    He W J, Qin C B, Qiao Z X, Zhang G F, Xiao L T, Jia S T 2016 Carbon 109 264

  • [1]

    Pietryga J M, Park Y S, Lim J, Fidler A F, Bae W K, Brovelli S, Kilmov V I 2016 Chem. Rev. 116 10513

    [2]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [3]

    Kim M R, Ma D L 2015 J. Phys. Chem. Lett. 6 85

    [4]

    Bae W K, Park Y S, Lim J, Lee D G, Padilha L A, McDaniel H, Robel I, Lee C H, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2661

    [5]

    Huang Q Q, Pan J Y, Zhang Y N, Chen J, Tao Z, He C, Zhou K F, Tu Y, Lei W 2016 Opt. Express 24 25955

    [6]

    Sukhovatkin V, Hinds S, Brzozowski L, Sargent E H 2009 Science 324 1542

    [7]

    Fisher B, Caruge J M, Zehnder D, Bawendi M 2005 Phys. Rev. Lett. 94 087403

    [8]

    Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A, Bawendi M G 2000 Science 287 1011

    [9]

    Klimov V I, Mikhailovsky A A, Xu S, Malko A, Hollingsworth J A, Leatherdale C A, Eisler H J, Bawendi M G 2000 Science 290 314

    [10]

    Chen Q G, Zhou T Y, He C Y, Jiang Y Q, Chen X 2011 Anal. Methods 3 1471

    [11]

    Fan Y Y, Liu H L, Han R C, Huang L, Shi H, Sha Y L, Jiang Y Q 2015 Sci. Rep. 5 9908

    [12]

    Welsher K, Yang H 2014 Nat. Nanotechnol. 9 198

    [13]

    Hu F R, Lv B H, Yin C Y, Zhang C F, Wang X Y, Lounis B, Xiao M 2016 Phys. Rev. Lett. 116 106404

    [14]

    Yuan G C, Gómez D E, Kirkwood N, Boldt K, Mulvaney P 2018 ACS Nano 12 3397

    [15]

    Fisher B R, Eisler H J, Stott N E, Bawendi M G 2004 J. Phys. Chem. B 108 143

    [16]

    Schlegel G, Bohnenberger J, Potapova I, Mews A 2002 Phys. Rev. Lett. 88 137401

    [17]

    Schmidt R, Krasselt C, Gohler C, von Borczyskowski C 2014 ACS Nano 8 3506

    [18]

    Zhang K, Chang H Y, Fu A H, Alivisatos A P, Yang H 2006 Nano Lett. 6 843

    [19]

    Htoon H, Hollingsworth J A, Dickerson R, Klimov V I 2003 Phys. Rev. Lett. 91 227401

    [20]

    Rabouw F T, Vaxenburg R, Bakulin A A, van Dijk Moes R J A, Bakker H J, Rodina A, Lifshitz E, Efros A L, Koenderink A F, Vanmaekelbergh D 2015 ACS Nano 9 10366

    [21]

    Li Z J, Zhang G F, Li B, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Appl. Phys. Lett. 111 153106

    [22]

    Yang C G, Zhang G F, Feng L H, Li B, Li Z J, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2018 Opt. Express 26 11889

    [23]

    Zang H D, Routh P K, Huang Y, Chen J S, Sutter E, Sutter P, Cotlet M 2016 ACS Nano 10 4790

    [24]

    Rusimova K R, Purkiss R M, Howes R, Lee F, Crampin S, Sloan P A 2018 Science 361 1012

    [25]

    Li B, Zhang G F, Yang C G, Li Z J, Chen R Y, Qin C B, Gao Y, Huang H, Xiao L T, Jia S T 2018 Opt. Express 26 4674

    [26]

    Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q, Long G L 2016 Light-Sci. Appl. 5 e16144

    [27]

    Hu J Y, Liu Y, Liu L L, Yu B, Zhang G F, Xiao L T, Jia S T 2015 Photon. Res. 3 24

    [28]

    Mobli M, Hoch J C 2014 Prog. Nucl. Magn. Reson. Spectrosc. 83 21

    [29]

    He W J, Qin C B, Qiao Z X, Zhang G F, Xiao L T, Jia S T 2016 Carbon 109 264

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1058
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-05
  • 修回日期:  2018-11-07
  • 刊出日期:  2019-01-05

单光子调制频谱用于量子点荧光寿命动力学的研究

  • 1. 山西大学激光光谱研究所, 量子光学与光量子器件国家重点实验室, 太原 030006;
  • 2. 山西大学极端光学协同创新中心, 太原 030006
    基金项目: 

    国家自然科学基金(批准号:61527824,11434007,61875109)、教育部长江学者和创新团队发展计划(批准号:IRT_17R70)、山西省"1331工程"重点学科建设计划和高等学校学科创新引智计划(111计划)(批准号:D18001)资助的课题.

摘要: 本文开展了基于单光子调制频谱测量量子点荧光寿命动力学特性的研究.在脉冲激光激发下,对探测到的量子点单光子荧光信号进行频谱分析以获得荧光调制频谱,研究发现特征频谱信号幅值与荧光寿命之间存在确定的非线性对应关系.这种单光子调制频谱方法能有效消除背景噪声和单光子探测器暗计数的影响,用于分析量子点荧光寿命动力学特性时在准确度以及时间分辨率方面都较目前普遍采用的荧光衰减曲线寿命拟合方法呈现出明显优势:当涨落误差为5%时,寿命测量准确度提高了一个数量级;当涨落误差和偏离误差均为5%时,对动力学测量效率以及时间分辨率提高了四倍以上.因此单光子调制频谱可以作为获取量子点在短时间尺度内激发态动力学信息的一种有效技术手段.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回