搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaWO4:Sm3+荧光粉的发光性质及其能量传递机理

毕长虹 孟庆裕

CaWO4:Sm3+荧光粉的发光性质及其能量传递机理

毕长虹, 孟庆裕
PDF
导出引用
  • 采用沉淀法制备了不同Sm3+掺杂浓度的白钨矿结构CaWO4荧光粉材料. 对CaWO4:Sm3+ 材料的光致发光性质的研究结果表明, 在404 nm光照下样品可以实现色纯度较高的红光发射, 而短波紫外240 nm光照下除Sm3+的特征发射外还能观察到CaWO4自激发发射, 能够获得较强的白光; 实验发现Sm3+掺杂浓度为2%时样品的发光强度最高; 通过对实验数据的分析确定了Sm3+之间的能量传递类型为电偶极-电偶极相互作用, 并计算了能量传递的临界距离大约为2.0 nm.
    • 基金项目: 国家自然科学基金(批准号:51002041);黑龙江省普通高等学校青年学术骨干支持计划(批准号:1252G032)和哈尔滨师范大学青年学术骨干资助计划(批准号:11KXQ-06)资助的课题.
    [1]

    Ryu J H, Bang S Y, Kim W S, Park G S, Kim K M, Yoon J W, Shim K B, Koshizaki N 2007 J. Alloys Compd. 441 146

    [2]

    Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏 2010 物理学报 59 1321]

    [3]

    Longo V M, Orhan E, Cavalcante L S, Porto S L, Espinosa J W M, Varela J A, Longa E 2007 Chem. Phys. 334 180

    [4]

    Feng X H, Meng Q Y, Sun J T, L S C 2011 Acta Phys. Sin. 60 037806 (in Chinese) [冯晓辉, 孟庆裕, 孙江亭, 吕树臣 2011 物理学报 60 037806]

    [5]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [6]

    Kodaira C A, Britoa H F, Malta O L, Serrac O A 2003 J. Lumin 101 11

    [7]

    Jia P Y, Liu X M, M Yu, Luo Y, Fang J, Lin J 2006 Chem Phys Lett. 424 358

    [8]

    Kodaira C A, Brito H F., Felinto M C F C 2003 J. Solid State Chem. 171 401

    [9]

    Tian Y, Chen B J, Yu H Q, Hua R N 2011 J. Colloid Interface Sci. 360 586

    [10]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [11]

    Yang H M, Wang Z L, Gong M L, Liang H B 2009 J. Alloys Compd. 488 331

    [12]

    Li C X, Lin C K, Liu X M, Lin J 2008 J. Nanosci. Nanotechnol. 8 1183

    [13]

    Xia Z G, Chen D M 2010 J. Am. Ceram. Soc. 93 1397

    [14]

    Tian Y, Liu Y, Hua R N, Na L Y, Chen B J 2012 Mater. Res. Bull. 47 59

    [15]

    Jin Y Hao Z D Zhang X, Luo Y S, Wang X J, Zhang J H 2011 Opt. Mater. 33 1591

    [16]

    Huang S H, Lou L R 1990 Chin. J. Lumin 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [17]

    Meng Q Y, Chen B J, Xu W, Yang Y M 2007 J. Appl. Phys. 102 093505

    [18]

    Tian Y, Chen B J, Tian B N, Hua R N, Sun J S 2011 J. Alloys Compd. 509 6096

    [19]

    Suhasini T, Kumar J S, Sasikala T, Jang K, Lee H S, Jayasimhadri M, Jeong J H, Yi S S, Moorthy L R 2009 Opt. Mater. 31 1167

    [20]

    Inokuti M, Hirayama F 1965 J. Chem. Phys. 43 1978

    [21]

    Blasse G 1986 J. Solid State Chem. 62 207

  • [1]

    Ryu J H, Bang S Y, Kim W S, Park G S, Kim K M, Yoon J W, Shim K B, Koshizaki N 2007 J. Alloys Compd. 441 146

    [2]

    Chen G X, Zhang Q Y, Zhao C, Shi D M, Jiang Z H 2010 Acta Phys. Sin. 59 1321 (in Chinese) [陈敢新, 张勤远, 赵纯, 石冬梅, 姜中宏 2010 物理学报 59 1321]

    [3]

    Longo V M, Orhan E, Cavalcante L S, Porto S L, Espinosa J W M, Varela J A, Longa E 2007 Chem. Phys. 334 180

    [4]

    Feng X H, Meng Q Y, Sun J T, L S C 2011 Acta Phys. Sin. 60 037806 (in Chinese) [冯晓辉, 孟庆裕, 孙江亭, 吕树臣 2011 物理学报 60 037806]

    [5]

    Meng Q Y, Zhang Q, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804 (in Chinese) [孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804]

    [6]

    Kodaira C A, Britoa H F, Malta O L, Serrac O A 2003 J. Lumin 101 11

    [7]

    Jia P Y, Liu X M, M Yu, Luo Y, Fang J, Lin J 2006 Chem Phys Lett. 424 358

    [8]

    Kodaira C A, Brito H F., Felinto M C F C 2003 J. Solid State Chem. 171 401

    [9]

    Tian Y, Chen B J, Yu H Q, Hua R N 2011 J. Colloid Interface Sci. 360 586

    [10]

    Tanabe S, Hayashi H, Hanada T, Onodera N 2002 Opt. Mater. 19 343

    [11]

    Yang H M, Wang Z L, Gong M L, Liang H B 2009 J. Alloys Compd. 488 331

    [12]

    Li C X, Lin C K, Liu X M, Lin J 2008 J. Nanosci. Nanotechnol. 8 1183

    [13]

    Xia Z G, Chen D M 2010 J. Am. Ceram. Soc. 93 1397

    [14]

    Tian Y, Liu Y, Hua R N, Na L Y, Chen B J 2012 Mater. Res. Bull. 47 59

    [15]

    Jin Y Hao Z D Zhang X, Luo Y S, Wang X J, Zhang J H 2011 Opt. Mater. 33 1591

    [16]

    Huang S H, Lou L R 1990 Chin. J. Lumin 11 1 (in Chinese) [黄世华, 楼立人 1990 发光学报 11 1]

    [17]

    Meng Q Y, Chen B J, Xu W, Yang Y M 2007 J. Appl. Phys. 102 093505

    [18]

    Tian Y, Chen B J, Tian B N, Hua R N, Sun J S 2011 J. Alloys Compd. 509 6096

    [19]

    Suhasini T, Kumar J S, Sasikala T, Jang K, Lee H S, Jayasimhadri M, Jeong J H, Yi S S, Moorthy L R 2009 Opt. Mater. 31 1167

    [20]

    Inokuti M, Hirayama F 1965 J. Chem. Phys. 43 1978

    [21]

    Blasse G 1986 J. Solid State Chem. 62 207

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2369
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-26
  • 修回日期:  2013-06-21
  • 刊出日期:  2013-10-05

CaWO4:Sm3+荧光粉的发光性质及其能量传递机理

  • 1. 哈尔滨师范大学物理与电子工程学院, 光电带隙材料省部共建教育部重点实验室, 哈尔滨 150025
    基金项目: 

    国家自然科学基金(批准号:51002041)

    黑龙江省普通高等学校青年学术骨干支持计划(批准号:1252G032)和哈尔滨师范大学青年学术骨干资助计划(批准号:11KXQ-06)资助的课题.

摘要: 采用沉淀法制备了不同Sm3+掺杂浓度的白钨矿结构CaWO4荧光粉材料. 对CaWO4:Sm3+ 材料的光致发光性质的研究结果表明, 在404 nm光照下样品可以实现色纯度较高的红光发射, 而短波紫外240 nm光照下除Sm3+的特征发射外还能观察到CaWO4自激发发射, 能够获得较强的白光; 实验发现Sm3+掺杂浓度为2%时样品的发光强度最高; 通过对实验数据的分析确定了Sm3+之间的能量传递类型为电偶极-电偶极相互作用, 并计算了能量传递的临界距离大约为2.0 nm.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回