搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低温硅技术的赝晶SiGe应变弛豫机理

杨洪东 于奇 王向展 李竞春 宁宁 杨谟华

基于低温硅技术的赝晶SiGe应变弛豫机理

杨洪东, 于奇, 王向展, 李竞春, 宁宁, 杨谟华
PDF
导出引用
  • 基于能量平衡条件,结合低温硅(LT-Si)剪切模量小于SiGe的实验结果,从螺位错形成模型出发,给出了基于LT-Si技术的赝晶SiGe应变弛豫机理.该机理指出,赝晶SiGe薄膜厚度小于位错形成临界厚度,可通过LT-Si缓冲层中形成位错释放应变;等于与大于临界厚度,位错在LT-Si层中优先形成,和文献报道中已观察到的实验结果相符合.同时,实验制备了基于LT-Si技术的弛豫Si0.8Ge0.2虚拟衬底材料.结果显示,位错被限制在LT-Si缓冲层中,弛豫度达到了85.09%,且在Si0.8Ge0.2中未观察到穿透位错,实验结果证实了赝晶Si0.8Ge0.2是通过在LT-Si缓冲层形成位错来释放应变的弛豫机理.
    • 基金项目: 国家部委61398基金资助的课题.
    [1]

    Ogura A,Saitoh H,Kosemura D,Kakemura Y,Yoshida T,Takei M,Koganezawa T,Hirosawa I,Kohno M,Nishita T,Nakanishi T 2009 Electrochem.Solid-State Lett. 12 H117

    [2]

    Wu X,Baribeau J M 2009 J.Appl.Phys. 105 435171

    [3]

    Yeo Y 2007 Semicond.Sci.Technol. 22 177

    [4]

    Ortolland C,Morin P,Chaton C,Mastromatteo E,Populaire C,Orain S,Leverd F,Stolk P,Buf F,Arnaud F 2006 Symposium on VLSI Technology 78

    [5]

    Dai X Y,Hu H Y,Song J J,Xuan R X,Zhang H M 2008 Acta Phys.Sin. 57 5918(in Chinese)[戴显英、胡辉勇、宋建军、宣荣喜、张鹤鸣 2008 物理学报 57 5918]

    [6]

    Welser J,Hoyt J L,Gibbons J F 1992 IEDM 1000

    [7]

    Xie Y H,Fitzgerald E A,Silverman P J,Kortan A R,Weir B E 1992 Mater.Sci.and Eng. 14 332

    [8]

    Liu J L,Moore C D,U'Ren G D,Luo Y H,Lu Y,Jin G,Thomas S G,Goorsky M S,Wang K L 1999 Appl.Phys.Lett. 75 1586

    [9]

    Trinkaus H,Hollander B,Rongen S,Mantl S,Herzog H J,Kuchenbecker J,Hackbarth T 2000 Appl.Phys.Lett. 76 3552

    [10]

    Yang H,Fan Y 2006 Pan Tao Ti Hsueh Pao 27 144

    [11]

    Luo Y H,Wan J,Forrest R L,Liu J L,Goorsky M S,Wang K L 2001 J.Appl.Phys. 89 8279

    [12]

    Chen H,Guo L W,Cui Q,Hu Q,Huang Q,Zhou J M 1996 J.Appl.Phys. 79 1167

    [13]

    Van Der Merwe J H 1963 J.Appl.Phys. 34 123

    [14]

    Matthews J W,Blakeslee A E 1974 J.Cryst.Growth 27 118

    [15]

    People R,Bean J C 1985 Appl.Phys.Lett. 47 322

    [16]

    Peng C S,Li Y K,Huang Q,Zhou J M 2001 11th International Conference on Molecular Beam Epitaxy 740

    [17]

    Bolkhovityanov Y B,Gutakovskii A K,Mashanov V I,Pchelyakov O P,Revenko M A,Sokolov L V 2001 Thin Solid Films 392 98

    [18]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P 1997 J.Cryst.Growth 175 499

    [19]

    Lee S W,Chen H C,Chen L J,Peng Y H,Kuan C H,Cheng H H 2002 J.Appl.Phys. 92 6880

    [20]

    Luo Y H,Wan J,Forrest R L,Liu J L,Jin G,Goorsky M S,Wang K L 2001 Appl.Phys.Lett. 78 454

    [21]

    Li J H,Peng C S,Wu Y,Dai D Y,Zhou J M,Mai Z H 1997 Appl.Phys.Lett. 71 3132

    [22]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P,Houghton D 1997 Appl.Phys.Lett. 70 3224

    [23]

    Nix W D 1998 Scripta Mater. 39 545

    [24]

    Dundurs J,Gangadharan A C 1969 Journal of the Mechanics and Physics of Solids 17 459

    [25]

    Chou Y T 1966 Phys.Status Solidi 17 509

    [26]

    Hirth J P,Lothe J,Nabarro F R N,Smoluchowski R 1968 Physics Today 21 85

  • [1]

    Ogura A,Saitoh H,Kosemura D,Kakemura Y,Yoshida T,Takei M,Koganezawa T,Hirosawa I,Kohno M,Nishita T,Nakanishi T 2009 Electrochem.Solid-State Lett. 12 H117

    [2]

    Wu X,Baribeau J M 2009 J.Appl.Phys. 105 435171

    [3]

    Yeo Y 2007 Semicond.Sci.Technol. 22 177

    [4]

    Ortolland C,Morin P,Chaton C,Mastromatteo E,Populaire C,Orain S,Leverd F,Stolk P,Buf F,Arnaud F 2006 Symposium on VLSI Technology 78

    [5]

    Dai X Y,Hu H Y,Song J J,Xuan R X,Zhang H M 2008 Acta Phys.Sin. 57 5918(in Chinese)[戴显英、胡辉勇、宋建军、宣荣喜、张鹤鸣 2008 物理学报 57 5918]

    [6]

    Welser J,Hoyt J L,Gibbons J F 1992 IEDM 1000

    [7]

    Xie Y H,Fitzgerald E A,Silverman P J,Kortan A R,Weir B E 1992 Mater.Sci.and Eng. 14 332

    [8]

    Liu J L,Moore C D,U'Ren G D,Luo Y H,Lu Y,Jin G,Thomas S G,Goorsky M S,Wang K L 1999 Appl.Phys.Lett. 75 1586

    [9]

    Trinkaus H,Hollander B,Rongen S,Mantl S,Herzog H J,Kuchenbecker J,Hackbarth T 2000 Appl.Phys.Lett. 76 3552

    [10]

    Yang H,Fan Y 2006 Pan Tao Ti Hsueh Pao 27 144

    [11]

    Luo Y H,Wan J,Forrest R L,Liu J L,Goorsky M S,Wang K L 2001 J.Appl.Phys. 89 8279

    [12]

    Chen H,Guo L W,Cui Q,Hu Q,Huang Q,Zhou J M 1996 J.Appl.Phys. 79 1167

    [13]

    Van Der Merwe J H 1963 J.Appl.Phys. 34 123

    [14]

    Matthews J W,Blakeslee A E 1974 J.Cryst.Growth 27 118

    [15]

    People R,Bean J C 1985 Appl.Phys.Lett. 47 322

    [16]

    Peng C S,Li Y K,Huang Q,Zhou J M 2001 11th International Conference on Molecular Beam Epitaxy 740

    [17]

    Bolkhovityanov Y B,Gutakovskii A K,Mashanov V I,Pchelyakov O P,Revenko M A,Sokolov L V 2001 Thin Solid Films 392 98

    [18]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P 1997 J.Cryst.Growth 175 499

    [19]

    Lee S W,Chen H C,Chen L J,Peng Y H,Kuan C H,Cheng H H 2002 J.Appl.Phys. 92 6880

    [20]

    Luo Y H,Wan J,Forrest R L,Liu J L,Jin G,Goorsky M S,Wang K L 2001 Appl.Phys.Lett. 78 454

    [21]

    Li J H,Peng C S,Wu Y,Dai D Y,Zhou J M,Mai Z H 1997 Appl.Phys.Lett. 71 3132

    [22]

    Linder K K,Zhang F C,Rieh J S,Bhattacharya P,Houghton D 1997 Appl.Phys.Lett. 70 3224

    [23]

    Nix W D 1998 Scripta Mater. 39 545

    [24]

    Dundurs J,Gangadharan A C 1969 Journal of the Mechanics and Physics of Solids 17 459

    [25]

    Chou Y T 1966 Phys.Status Solidi 17 509

    [26]

    Hirth J P,Lothe J,Nabarro F R N,Smoluchowski R 1968 Physics Today 21 85

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4965
  • PDF下载量:  784
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-13
  • 修回日期:  2009-12-11
  • 刊出日期:  2010-04-05

基于低温硅技术的赝晶SiGe应变弛豫机理

  • 1. 电子科技大学 电子薄膜与集成器件国家重点实验室,成都 610054
    基金项目: 

    国家部委61398基金资助的课题.

摘要: 基于能量平衡条件,结合低温硅(LT-Si)剪切模量小于SiGe的实验结果,从螺位错形成模型出发,给出了基于LT-Si技术的赝晶SiGe应变弛豫机理.该机理指出,赝晶SiGe薄膜厚度小于位错形成临界厚度,可通过LT-Si缓冲层中形成位错释放应变;等于与大于临界厚度,位错在LT-Si层中优先形成,和文献报道中已观察到的实验结果相符合.同时,实验制备了基于LT-Si技术的弛豫Si0.8Ge0.2虚拟衬底材料.结果显示,位错被限制在LT-Si缓冲层中,弛豫度达到了85.09%,且在Si0.8Ge0.2中未观察到穿透位错,实验结果证实了赝晶Si0.8Ge0.2是通过在LT-Si缓冲层形成位错来释放应变的弛豫机理.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回