搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光程编码与相干合成的三维超分辨术

商在明 丁志华 王玲 刘勇

引用本文:
Citation:

基于光程编码与相干合成的三维超分辨术

商在明, 丁志华, 王玲, 刘勇

Path length coded coherence combination for three-dimensional superresolution

Shang Zai-Ming, Ding Zhi-Hua, Wang Ling, Liu Yong
PDF
导出引用
  • 光学相干层析成像的轴向分辨率和横向分辨率是互为独立的,其轴向分辨率由系统光源带宽和探测光束的聚焦条件共同决定,而横向分辨率由系统样品臂的聚焦条件决定. 提高光学相干层析成像的轴向分辨率的方法主要基于宽带光源技术以及变迹术与相干门相结合的方法,而这些方法对于横向分辨率并没有提高. 提出了一种通过光程编码与相干合成的方法,可以同时提高其轴向分辨率和横向分辨率. 通过在光学相干层析成像系统的样品臂中加入光程编码分束器形成多种对应不同光程延迟的有效响应函数,基于光学相干层析成像术固有的光程分辨能力可以得到同一样品对应于不同有效响应函数的多幅图像. 通过数字控制不同有效响应函数的相对贡献对其进行相干合成,可以同时实现轴向和横向的超分辨效果. 与以前的方法相比,光程编码与相干合成方法简单易行、成本低廉,不仅可以避免系统复杂和价格昂贵等不足,而且可以同时较大幅度地提高系统的轴向分辨率和横向分辨率.
    Axial resolution and traverse resolution in optical coherence tomography (OCT) imaging are determined by different factors, while axial resolution is determined by both the coherence length of light source and the beam-focusing condition, and traverse resolution is determined by the beam-focusing condition of the sample arm. In the main approaches to axial resolution improvement in OCT, a light source with a broaden bandwidth is used and coherence gating is combined with apodization, which cannot improve the traverse resolution. A method is introduced to increase both the axial resolution and traverse resolution simultaneously in an OCT system by the path length code and coherent compounding method. Different effective functions are formed by adding a path length coding lens in to the proposed OCT system, which are corresponding to different path lengths. Owing to the intrinsic ability to differentiate path lengths, we can obtain several images of the same sample, corresponding to the different effective functions simultaneously. By adding these functions through numerically controlling their relative contributions, we can finally obtain a coherent compounding signal with three-dimensional superresolutions of axial resolution and traverse resolution. Compared with the previous approaches, the path length code and coherent compounding method is very easy to operate and its cost is very low, which can not only avoid the high cost and inconvenience in implantation, but also increase both axial and traverse resolutions simultaneously.
    • 基金项目: 国家自然科学基金(批准号:60978037, 60878057)和浙江省自然科学基金(批准号:Y2091019)资助的课题.
    [1]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese) [梁艳梅、周大川、孟凡勇、王明伟 2007 物理学报 56 3246]

    [2]
    [3]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R 1991 Science 254 1178

    [4]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese) [贾亚青、梁艳梅、朱晓农 2007 物理学报 56 3861]

    [5]
    [6]
    [7]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese) [杨亚良、丁志华、王 凯、吴 凌、吴 兰 2009 物理学报 58 1773]

    [8]

    Zhou L, Ding Z H, Yu X F 2005 Acta Opt. Sin. 25 1181 (in Chinese) [周 琳、丁志华、俞晓峰 2005 光学学报 25 1181]

    [9]
    [10]

    Morgner U, Kartner F X, Cho S H 1999 Opt. Lett. 24 411

    [11]
    [12]
    [13]

    Sutter D, Steinmeyer G, Gallmann L, Matuschek N, Keller U 1999 Opt. Lett. 24 631

    [14]
    [15]

    Kray S, Spoler F, Forst M 2008 Opt. Lett. 33 2092

    [16]
    [17]

    Kowalevicz A M, Ko T, Hartl I 2002 Opt. Express 10 349

    [18]

    Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S 2001 Opt. Lett. 26 608

    [19]
    [20]

    Sathyam U S, Colston B W, Da Silva L B 1999 Appl. Opt. 38 2097

    [21]
    [22]
    [23]

    Schmitt J M, Xiang S H, Yung K 1998 J. Opt. Soc. Am. A 15 2288

    [24]
    [25]

    Liu L, Deng X Q, Wang G Y 2001 Acta Phys. Sin. 50 48 (in Chinese) [刘 力、邓小强、王桂英 2001 物理学报 50 48]

    [26]
    [27]

    Martinze-Corral M, Andres P, Ojeda-Castaneda J, Saavedra G 1995 Opt. Commun. 119 491

    [28]

    Meng J, Zhou L, Ding Z H 2008 Acta Photon. Sin. 37 533 (in Chinese) [孟 婕、周 琳、丁志华 2008 光子学报 37 533]

    [29]
    [30]
    [31]

    Sheppard C J R 1977 Optik 48 329

    [32]

    Born M, Wolf E 1999 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp401-411 (in Chinese)[波恩M、沃耳夫E 1999 光学原理 (第七版)(中译本)(北京:电子工业出版社) 第401-411页]

    [33]
  • [1]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese) [梁艳梅、周大川、孟凡勇、王明伟 2007 物理学报 56 3246]

    [2]
    [3]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R 1991 Science 254 1178

    [4]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese) [贾亚青、梁艳梅、朱晓农 2007 物理学报 56 3861]

    [5]
    [6]
    [7]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese) [杨亚良、丁志华、王 凯、吴 凌、吴 兰 2009 物理学报 58 1773]

    [8]

    Zhou L, Ding Z H, Yu X F 2005 Acta Opt. Sin. 25 1181 (in Chinese) [周 琳、丁志华、俞晓峰 2005 光学学报 25 1181]

    [9]
    [10]

    Morgner U, Kartner F X, Cho S H 1999 Opt. Lett. 24 411

    [11]
    [12]
    [13]

    Sutter D, Steinmeyer G, Gallmann L, Matuschek N, Keller U 1999 Opt. Lett. 24 631

    [14]
    [15]

    Kray S, Spoler F, Forst M 2008 Opt. Lett. 33 2092

    [16]
    [17]

    Kowalevicz A M, Ko T, Hartl I 2002 Opt. Express 10 349

    [18]

    Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S 2001 Opt. Lett. 26 608

    [19]
    [20]

    Sathyam U S, Colston B W, Da Silva L B 1999 Appl. Opt. 38 2097

    [21]
    [22]
    [23]

    Schmitt J M, Xiang S H, Yung K 1998 J. Opt. Soc. Am. A 15 2288

    [24]
    [25]

    Liu L, Deng X Q, Wang G Y 2001 Acta Phys. Sin. 50 48 (in Chinese) [刘 力、邓小强、王桂英 2001 物理学报 50 48]

    [26]
    [27]

    Martinze-Corral M, Andres P, Ojeda-Castaneda J, Saavedra G 1995 Opt. Commun. 119 491

    [28]

    Meng J, Zhou L, Ding Z H 2008 Acta Photon. Sin. 37 533 (in Chinese) [孟 婕、周 琳、丁志华 2008 光子学报 37 533]

    [29]
    [30]
    [31]

    Sheppard C J R 1977 Optik 48 329

    [32]

    Born M, Wolf E 1999 Principle of Optics (Beijing: Publishing House of Electronics Industry) pp401-411 (in Chinese)[波恩M、沃耳夫E 1999 光学原理 (第七版)(中译本)(北京:电子工业出版社) 第401-411页]

    [33]
  • [1] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [2] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头. 物理学报, 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [3] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [4] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法. 物理学报, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [5] 周锐, 吴梦雪, 沈飞, 洪明辉. 基于近场光学的微球超分辨显微效应. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [6] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展. 物理学报, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [7] 王心怡, 范全平, 魏来, 杨祖华, 张强强, 陈勇, 彭倩, 晏卓阳, 肖沙里, 曹磊峰. Fresnel波带片编码成像的高分辨重建. 物理学报, 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [8] 林丹樱, 屈军乐. 超分辨成像及超分辨关联显微技术研究进展. 物理学报, 2017, 66(14): 148703. doi: 10.7498/aps.66.148703
    [9] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾. 物理学报, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [10] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [11] 王雪花, 陈丹妮, 于斌, 牛憨笨. 基于累积量标准差的超分辨光学涨落成像解卷积优化. 物理学报, 2016, 65(19): 198701. doi: 10.7498/aps.65.198701
    [12] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [13] 严雪过, 沈毅, 潘聪, 李鹏, 丁志华. 基于拉锥结构的全光纤型内窥OCT探针研究. 物理学报, 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [14] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [15] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [16] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究. 物理学报, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [17] 支绍韬, 章海军, 张冬仙. 基于大数值孔径环形光锥照明的超分辨光学显微成像方法研究. 物理学报, 2012, 61(2): 024207. doi: 10.7498/aps.61.024207
    [18] 王伟, 周常河, 余俊杰. 三环位相型光瞳滤波器的横向超分辨与轴向焦深扩展. 物理学报, 2011, 60(2): 024201. doi: 10.7498/aps.60.024201
    [19] 云茂金, 万 勇, 孔伟金, 王 美, 刘均海, 梁 伟. 可调谐位相型光瞳滤波器的横向光学超分辨和轴向扩展焦深. 物理学报, 2008, 57(1): 194-199. doi: 10.7498/aps.57.194
    [20] 赵维谦, 陈珊珊, 冯政德. 图像复原式整形环形光横向超分辨共焦显微测量新方法. 物理学报, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
计量
  • 文章访问数:  5695
  • PDF下载量:  770
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-25
  • 修回日期:  2011-07-05
  • 刊出日期:  2011-06-05

/

返回文章
返回