搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr掺杂ZnO纳米线的电子结构和磁性

张富春 张威虎 董军堂 张志勇

Cr掺杂ZnO纳米线的电子结构和磁性

张富春, 张威虎, 董军堂, 张志勇
PDF
导出引用
  • 采用自旋极化密度泛函理论系统研究了Cr掺杂ZnO纳米线的电学、磁学以及光学属性.计算结果显示,Cr原子沿[0001]方向替代ZnO纳米线中的Zn原子时体系一般呈现铁磁耦合,沿[1010]和[0110]方向替代Zn原子时体系呈现反铁磁耦合,且磁性耦合状态在费米能级附近出现了明显的自旋劈裂现象,发生了强烈的Cr 3d和O 2p杂化效应.自旋态密度计算结果显示,磁矩主要来源于Cr原子未成对3d态电子的贡献,磁矩的大小与Cr原子的电子排布有关.光学性质计算结果显示,Cr掺杂ZnO纳米线在远紫外和近紫外都具有明显的吸收峰,吸收峰发生了明显的红移.这些结果都表明Cr掺杂ZnO纳米线也许是一种很有前途的稀磁半导体材料.
    • 基金项目: 国家自然科学基金(批准号: 60976069)、陕西省自然科学基金(批准号:2010JM8020)、陕西省教育厅科学研究计划(批准号:2010JK923,11JK0846)和延安大学博士科研启动基金(批准号:YD2009-01)资助的课题.
    [1]

    Ohno H 1998 Science 281 951

    [2]
    [3]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [4]
    [5]

    Jian W B, Wu Z Y, Huang R T, Chiang S J, Lan M D, Lin J J 2006 Phys. Rev. B 73 233308

    [6]

    Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C, Waghmare U V 2005 Phys. Rev. Lett. 94 187204

    [7]
    [8]

    Kulkarni J S, Kazakova O, Holmes J D 2006 Appl. Phys. A 85 277

    [9]
    [10]
    [11]

    Chang Y Q, Wang D B, Luo X H, Xu X Y, Chen X H, Li L, Chen C P, Wang R M, Xu J, Yu D P 2003 Appl. Phys. Lett. 83 4020

    [12]
    [13]

    Chou S Y, Krauss P R, Zhang W J 1997 Vac. Sci. Technol. B 15 2897

    [14]

    Dietl T, Ohno H, Matsukura F, Cubert J, Ferrand D 2000 Science 287 1019

    [15]
    [16]
    [17]

    Ueda K, Tabata H, Kawai K 2001 Appl. Phys. Lett. 79 988

    [18]

    Cho Y M, Choo W K, Kim H, Kim D, Ihm Y E 2002 Appl. Phys. Lett. 80 3358

    [19]
    [20]

    Jung S W, An S J, Yi G C, Jung C U, Lee S I, Cho S 2002 Appl. Phys. Lett. 80 4561

    [21]
    [22]
    [23]

    Neal J R, Behan A J, Ibrahim R M, Blythe H J, Ziese M, Fox A M, Gehring G A 2006 Phys. Rev. Lett. 96 197208

    [24]
    [25]

    Yuan P F, Ding Z J, Ju X 2008 Chin. Phys. Lett. 25 1030

    [26]
    [27]

    Jun Y, Jung Y, Cheon J 2002 J. Am. Chem. Soc. 124 615

    [28]

    Lorite I, Rubio-Marcos F, Romero J J, Fernandez J F 2009 Mater. Lett. 63 212

    [29]
    [30]
    [31]

    Norberg N S, Kittilstved K R, Amonette J E 2004 J. Am. Chem. Soc. 126 9387

    [32]
    [33]

    Liu J J, Yu M H, Zhou W L 2005 Appl. Phys. Lett. 87 172505

    [34]
    [35]

    Zhang X M, Zhang Y, Wang Z L 2008 Appl. Phys. Lett. 92 162102

    [36]

    Chu D W, Zeng Y P, Jiang D L 2007 Solid State Commun. 143 308

    [37]
    [38]

    Roberts B K, Pakhomov A B, Krishnan K M 2008 J. Appl. Phys. 103 07D133

    [39]
    [40]

    Li Y B, Li Y, Zhu M Y, Yang T, Huang J, Jin H M, Hu Y M 2010 Solid State Commun. 150 751

    [41]
    [42]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [43]
    [44]

    Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T, Koinuma H 2001 Appl. Phys. Lett. 78 3824

    [45]
    [46]
    [47]

    Lee H J, Jeong S Y, Hwang J Y, Cho C R 2003 Eur. Phys. Lett. 64 797

    [48]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [49]
    [50]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 013298

    [51]
    [52]
    [53]

    Sapra A, Sarma D D 2004 Phys. Rev. B 69 25304

    [54]
    [55]

    Wander A, Harrison N M 2000 Surf. Sci. Lett. 23 L342

    [56]
    [57]

    Wang Q, Sun Q, Jena P, Kawazoe Y 2005 Appl. Phys. Lett. 87 162509

    [58]
    [59]

    Hu Y M, Chen Y T, Zhong Z X, Yu C C, Chen G J, Huang P Z, Chou W Y, Chang J, Wang C R 2008 Appl. Surf. Sci. 254 3873

    [60]
    [61]

    Chua D, Zeng Y P, Jiang D L 2007 Solid State Commum. 143 308

    [62]
    [63]

    Liu H, Zhang X, Li L Y, Wang Y X, Gao K H, Li Z Q, Zheng R K, Ringer S P, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 91 072511

    [64]
    [65]

    Zhang Z H, Qi X Y, Jian J K, Duan X F 2006 Micron 37 229

    [66]
    [67]

    Kong Y C, Yu D P, Zhang B, Fang W, Feng S Q 2001 Appl. Phys. Lett. 78 407

    [68]

    Chen T, Xing G Z, Zhang Z, Chen H Y, Wu T 2008 Nanotechnology 19 435711

    [69]
    [70]
    [71]

    Twardowski A, Dietl T, Demianiuk M 1983 Solid State Commun. 48 845

    [72]

    Kolodziejski L A, Gunshor R L, Venkatasubramanian R, Bonsett T C, Frohne R, Datta S, Otsuka N, Bylsma R B, Becker W M, Nurmikko A V 1986 J. Vac. Sci. Technol. B 4 583

    [73]
    [74]

    Lee Y R, Ramdas A K, Aggarwal R L 1988 Phys. Rev. B 38 10600

    [75]
  • [1]

    Ohno H 1998 Science 281 951

    [2]
    [3]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [4]
    [5]

    Jian W B, Wu Z Y, Huang R T, Chiang S J, Lan M D, Lin J J 2006 Phys. Rev. B 73 233308

    [6]

    Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C, Waghmare U V 2005 Phys. Rev. Lett. 94 187204

    [7]
    [8]

    Kulkarni J S, Kazakova O, Holmes J D 2006 Appl. Phys. A 85 277

    [9]
    [10]
    [11]

    Chang Y Q, Wang D B, Luo X H, Xu X Y, Chen X H, Li L, Chen C P, Wang R M, Xu J, Yu D P 2003 Appl. Phys. Lett. 83 4020

    [12]
    [13]

    Chou S Y, Krauss P R, Zhang W J 1997 Vac. Sci. Technol. B 15 2897

    [14]

    Dietl T, Ohno H, Matsukura F, Cubert J, Ferrand D 2000 Science 287 1019

    [15]
    [16]
    [17]

    Ueda K, Tabata H, Kawai K 2001 Appl. Phys. Lett. 79 988

    [18]

    Cho Y M, Choo W K, Kim H, Kim D, Ihm Y E 2002 Appl. Phys. Lett. 80 3358

    [19]
    [20]

    Jung S W, An S J, Yi G C, Jung C U, Lee S I, Cho S 2002 Appl. Phys. Lett. 80 4561

    [21]
    [22]
    [23]

    Neal J R, Behan A J, Ibrahim R M, Blythe H J, Ziese M, Fox A M, Gehring G A 2006 Phys. Rev. Lett. 96 197208

    [24]
    [25]

    Yuan P F, Ding Z J, Ju X 2008 Chin. Phys. Lett. 25 1030

    [26]
    [27]

    Jun Y, Jung Y, Cheon J 2002 J. Am. Chem. Soc. 124 615

    [28]

    Lorite I, Rubio-Marcos F, Romero J J, Fernandez J F 2009 Mater. Lett. 63 212

    [29]
    [30]
    [31]

    Norberg N S, Kittilstved K R, Amonette J E 2004 J. Am. Chem. Soc. 126 9387

    [32]
    [33]

    Liu J J, Yu M H, Zhou W L 2005 Appl. Phys. Lett. 87 172505

    [34]
    [35]

    Zhang X M, Zhang Y, Wang Z L 2008 Appl. Phys. Lett. 92 162102

    [36]

    Chu D W, Zeng Y P, Jiang D L 2007 Solid State Commun. 143 308

    [37]
    [38]

    Roberts B K, Pakhomov A B, Krishnan K M 2008 J. Appl. Phys. 103 07D133

    [39]
    [40]

    Li Y B, Li Y, Zhu M Y, Yang T, Huang J, Jin H M, Hu Y M 2010 Solid State Commun. 150 751

    [41]
    [42]

    Ueda K, Tabata H, Kawai T 2001 Appl. Phys. Lett. 79 988

    [43]
    [44]

    Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T, Koinuma H 2001 Appl. Phys. Lett. 78 3824

    [45]
    [46]
    [47]

    Lee H J, Jeong S Y, Hwang J Y, Cho C R 2003 Eur. Phys. Lett. 64 797

    [48]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [49]
    [50]

    Wang Y, Perdew J P 1991 Phys. Rev. B 44 013298

    [51]
    [52]
    [53]

    Sapra A, Sarma D D 2004 Phys. Rev. B 69 25304

    [54]
    [55]

    Wander A, Harrison N M 2000 Surf. Sci. Lett. 23 L342

    [56]
    [57]

    Wang Q, Sun Q, Jena P, Kawazoe Y 2005 Appl. Phys. Lett. 87 162509

    [58]
    [59]

    Hu Y M, Chen Y T, Zhong Z X, Yu C C, Chen G J, Huang P Z, Chou W Y, Chang J, Wang C R 2008 Appl. Surf. Sci. 254 3873

    [60]
    [61]

    Chua D, Zeng Y P, Jiang D L 2007 Solid State Commum. 143 308

    [62]
    [63]

    Liu H, Zhang X, Li L Y, Wang Y X, Gao K H, Li Z Q, Zheng R K, Ringer S P, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 91 072511

    [64]
    [65]

    Zhang Z H, Qi X Y, Jian J K, Duan X F 2006 Micron 37 229

    [66]
    [67]

    Kong Y C, Yu D P, Zhang B, Fang W, Feng S Q 2001 Appl. Phys. Lett. 78 407

    [68]

    Chen T, Xing G Z, Zhang Z, Chen H Y, Wu T 2008 Nanotechnology 19 435711

    [69]
    [70]
    [71]

    Twardowski A, Dietl T, Demianiuk M 1983 Solid State Commun. 48 845

    [72]

    Kolodziejski L A, Gunshor R L, Venkatasubramanian R, Bonsett T C, Frohne R, Datta S, Otsuka N, Bylsma R B, Becker W M, Nurmikko A V 1986 J. Vac. Sci. Technol. B 4 583

    [73]
    [74]

    Lee Y R, Ramdas A K, Aggarwal R L 1988 Phys. Rev. B 38 10600

    [75]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3502
  • PDF下载量:  846
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-11
  • 修回日期:  2011-05-11
  • 刊出日期:  2011-06-05

Cr掺杂ZnO纳米线的电子结构和磁性

  • 1. 延安大学物理与电子信息学院, 延安 716000;
  • 2. 西北大学信息科学与技术学院, 西安 710127
    基金项目: 

    国家自然科学基金(批准号: 60976069)、陕西省自然科学基金(批准号:2010JM8020)、陕西省教育厅科学研究计划(批准号:2010JK923,11JK0846)和延安大学博士科研启动基金(批准号:YD2009-01)资助的课题.

摘要: 采用自旋极化密度泛函理论系统研究了Cr掺杂ZnO纳米线的电学、磁学以及光学属性.计算结果显示,Cr原子沿[0001]方向替代ZnO纳米线中的Zn原子时体系一般呈现铁磁耦合,沿[1010]和[0110]方向替代Zn原子时体系呈现反铁磁耦合,且磁性耦合状态在费米能级附近出现了明显的自旋劈裂现象,发生了强烈的Cr 3d和O 2p杂化效应.自旋态密度计算结果显示,磁矩主要来源于Cr原子未成对3d态电子的贡献,磁矩的大小与Cr原子的电子排布有关.光学性质计算结果显示,Cr掺杂ZnO纳米线在远紫外和近紫外都具有明显的吸收峰,吸收峰发生了明显的红移.这些结果都表明Cr掺杂ZnO纳米线也许是一种很有前途的稀磁半导体材料.

English Abstract

参考文献 (75)

目录

    /

    返回文章
    返回