搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁/反铁磁双层膜系统中的磁畴动力学行为

朱金荣 香妹 胡经国

引用本文:
Citation:

铁磁/反铁磁双层膜系统中的磁畴动力学行为

朱金荣, 香妹, 胡经国

Dynamic behaviors of domain wall in FM/AFM bilayers

Zhu Jin-Rong, Xiang Mei, Hu Jing-Guo
PDF
导出引用
  • 比较了铁磁单层膜与铁磁/反铁磁双层膜结构中的磁畴演化行为, 发现由于反铁磁层膜对铁磁层膜的耦合作用使得系统的磁畴壁厚度、 磁畴壁等效质量、磁畴壁移动速度等发生了改变, 系统的矫顽场增强, 并出现了交换偏置场. 文章具体研究了反铁磁层耦合作用下其磁畴壁厚度、 等效质量以及磁畴壁移动速度等与反铁磁层的净磁化、 磁各向异性、界面耦合强度以及温度等的关系; 并研究了其对铁磁/反铁磁双层膜中的交换偏置场、矫顽场的影响. 进而 从磁畴结构的形成及其演化上揭示了铁磁/反铁磁双 层膜中出现交换偏置以及矫顽场增加的物理机制.
    The magnetic domain evolution behaviors of ferromagnetic (FM) monolayer and ferromagnetic (FM)/antiferromagnetic (AFM) bilayer are compared and analyzed. The results indicate that the equivalent width, mass and velocity of magnetic domain wall are changed, then the coercivity is enhanced and the exchange bias is present due to the exchange coupling between anti- ferromagnetic and ferromagnetic layer. The results also show that the equivalent width, mass and velocity of magnetic domain wall for FM /AFM bilayers system could be varied with the change of the net magnetization of antiferromagnetic layer, the magnetic anisotropy constants of FM and AFM layer, the exchange coupling constant of antiferromagnetic layer, interface exchange coupling constant and the temperature, and the relevant influences on the coercivity and exchange bias are discussed. So, the physical mechanisms of the emergence of exchange bias and enhancement of coercivity are discovered by the formation and evolution of the domain wall.
    • 基金项目: 国家自然科学基金(批准号: 10974170)和国家自然科学青年基金(批准号: 11104239, 11104240)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10974170) and the National Natural Science Foundation of China for Youths (Grant Nos. 11104239, 11104240).
    [1]

    Noges J, Schuller I K 1999 Magn. Magn. Mater. 192 203

    [2]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [3]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [4]

    Stamps R L 2000 J. Phys. D: Appl. Phys. 33 247

    [5]

    Nowak U, Usadel K D, Keller J, Miltenyi P, Beschoten B, Guntherodt G 2002 Phys. Rev. B 66 014430

    [6]

    Wu X W, Chien C L 1998 Phys. Rev. Lett. 81 2795

    [7]

    Eftaxias E, Trohidou K N 2005 Phys. Rev. B 71 134406

    [8]

    Miltenyi P, Gierlings M, Keller J, Beschoten B, Guntherodt G, Norwak U, Usadel K D 2000 Phys. Rev. Lett. 84 4224

    [9]

    Bae S, Judy J H, Egelhoff W F 2000 J. Appl. Phys. 87 6650

    [10]

    Jungblut R, Coehoorn R, Johnson M T, Sauer C, van der Zaag P J, Ball A R 1995 Magn. Magn. Mater. 148 300

    [11]

    Nakatani R, Hoshino K, Noguchi S, Sugita Y 1994 Appl. Phys. 33 133

    [12]

    Bae S, Judy J H, Egelhoff W F, Chen P J 2000 J. Appl. Phys. 87 6650

    [13]

    Tian H Y, Xu X Y, Hu J G 2009 Acta Phys. Sin. 58 2757 (in Chinese) [田宏玉, 许小勇, 胡经国 2009 物理学报 58 2757]

    [14]

    Tsang C, Fontana R E, Lin F 1994 IEEE Trans. Magn. 30 3801

    [15]

    Dieny B, Speriosu V, Parkin P 1991 Phys. Rev. B 43 1297

    [16]

    Heim D E, Fontana Jr R E, Tsang C 1994 IEEE Trans. Magn. 30 316

    [17]

    Daughton J M, Chen Y J 1993 IEEE Trans. Magn. 29 2705

    [18]

    Dieny B J 1994 Magn. Magn. Mater. 136 335

    [19]

    Stamps R L, Usadel K D 2006 Eur. Phys. Lett. 74 512

    [20]

    Xu Y, Hu J G, Stamps R L 2008 Commuun. Theor. Phys. 50 253

    [21]

    Scholten G, Usadel K D, Nowak U 2005 Phys. Rev. B 71 064413

    [22]

    Zhong W D 1998 Ferromagnetics (2) (Beijing: Science Press) p95 (in Chinese) [钟文定 1998 铁磁学(中册) (北京: 科学出版社) p95]

  • [1]

    Noges J, Schuller I K 1999 Magn. Magn. Mater. 192 203

    [2]

    Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413

    [3]

    Meiklejohn W H, Bean C P 1957 Phys. Rev. 105 904

    [4]

    Stamps R L 2000 J. Phys. D: Appl. Phys. 33 247

    [5]

    Nowak U, Usadel K D, Keller J, Miltenyi P, Beschoten B, Guntherodt G 2002 Phys. Rev. B 66 014430

    [6]

    Wu X W, Chien C L 1998 Phys. Rev. Lett. 81 2795

    [7]

    Eftaxias E, Trohidou K N 2005 Phys. Rev. B 71 134406

    [8]

    Miltenyi P, Gierlings M, Keller J, Beschoten B, Guntherodt G, Norwak U, Usadel K D 2000 Phys. Rev. Lett. 84 4224

    [9]

    Bae S, Judy J H, Egelhoff W F 2000 J. Appl. Phys. 87 6650

    [10]

    Jungblut R, Coehoorn R, Johnson M T, Sauer C, van der Zaag P J, Ball A R 1995 Magn. Magn. Mater. 148 300

    [11]

    Nakatani R, Hoshino K, Noguchi S, Sugita Y 1994 Appl. Phys. 33 133

    [12]

    Bae S, Judy J H, Egelhoff W F, Chen P J 2000 J. Appl. Phys. 87 6650

    [13]

    Tian H Y, Xu X Y, Hu J G 2009 Acta Phys. Sin. 58 2757 (in Chinese) [田宏玉, 许小勇, 胡经国 2009 物理学报 58 2757]

    [14]

    Tsang C, Fontana R E, Lin F 1994 IEEE Trans. Magn. 30 3801

    [15]

    Dieny B, Speriosu V, Parkin P 1991 Phys. Rev. B 43 1297

    [16]

    Heim D E, Fontana Jr R E, Tsang C 1994 IEEE Trans. Magn. 30 316

    [17]

    Daughton J M, Chen Y J 1993 IEEE Trans. Magn. 29 2705

    [18]

    Dieny B J 1994 Magn. Magn. Mater. 136 335

    [19]

    Stamps R L, Usadel K D 2006 Eur. Phys. Lett. 74 512

    [20]

    Xu Y, Hu J G, Stamps R L 2008 Commuun. Theor. Phys. 50 253

    [21]

    Scholten G, Usadel K D, Nowak U 2005 Phys. Rev. B 71 064413

    [22]

    Zhong W D 1998 Ferromagnetics (2) (Beijing: Science Press) p95 (in Chinese) [钟文定 1998 铁磁学(中册) (北京: 科学出版社) p95]

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用. 物理学报, 2024, 73(2): 027501. doi: 10.7498/aps.73.20231374
    [2] 刘晓伟, 熊俊林, 王利铮, 梁世军, 程斌, 缪峰. 单晶Ta3FeS6薄膜中巨大的矫顽场. 物理学报, 2022, 71(12): 127503. doi: 10.7498/aps.71.20220699
    [3] 范喆, 马晓萍, 李尚赫, 沈帝虎, 朴红光, 金东炫. 消磁场对纳米铁磁线磁畴壁动力学行为的影响. 物理学报, 2012, 61(10): 107502. doi: 10.7498/aps.61.107502
    [4] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [5] 潘靖, 周岚, 胡经国. 交换偏置系统中的反铁磁磁化与自旋波. 物理学报, 2009, 58(9): 6487-6493. doi: 10.7498/aps.58.6487
    [6] 田宏玉, 胡经国, 许小勇. 铁磁/反铁磁双层膜中冷却场对交换偏置场的影响. 物理学报, 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [7] 贾宝申, 赵业权, 张学锋, 申 岩, 何焰蓝. 近化学计量比钽酸锂畴反转特性研究. 物理学报, 2008, 57(9): 5670-5674. doi: 10.7498/aps.57.5670
    [8] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [9] 马 梅, 蔡 蕾, 王兴福, 胡经国. 掺杂下铁磁/反铁磁双层膜中交换偏置的增强. 物理学报, 2007, 56(1): 529-534. doi: 10.7498/aps.56.529
    [10] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波. 物理学报, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [11] 李 岩, 陈庆永, 姜宏伟, 王艾玲, 郑 鹉. PtMn层厚度对NiFe/PtMn双层膜交换偏置形成及热稳定性的影响. 物理学报, 2006, 55(12): 6647-6650. doi: 10.7498/aps.55.6647
    [12] 李 岩, 陈庆永, 姜宏伟. (Ni0.81Fe0.19)1-xCrx作为种子层对NiFe/PtMn双层膜交换偏置的影响. 物理学报, 2006, 55(5): 2543-2547. doi: 10.7498/aps.55.2543
    [13] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [14] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [15] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [16] 姜宏伟, 李明华, 王艾玲, 郑鹉. NiFe/FeMn双层膜的交换耦合. 物理学报, 2004, 53(4): 1232-1235. doi: 10.7498/aps.53.1232
    [17] 代 波, 蔡建旺, 赖武彦. 成分和厚度的依赖. 物理学报, 2003, 52(2): 478-482. doi: 10.7498/aps.52.478
    [18] 李明华, 于广华, 何珂, 朱逢吾, 赖武彦. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合. 物理学报, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [19] 赵明磊, 王春雷, 钟维烈, 张沛霖, 王矜奉. 铋层化合物Sr1+xBi4-xTi4-xTaxO15(x=0—1)陶瓷的介电和铁电特性. 物理学报, 2002, 51(2): 420-423. doi: 10.7498/aps.51.420
    [20] 李明华, 于广华, 姜宏伟, 蔡建旺, 朱逢吾. Ta,Ta/Cu缓冲层对NiFe/Fe Mn双层膜交换偏置场的影响. 物理学报, 2001, 50(11): 2230-2234. doi: 10.7498/aps.50.2230
计量
  • 文章访问数:  6548
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-05
  • 修回日期:  2012-03-17
  • 刊出日期:  2012-09-05

/

返回文章
返回