搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型针孔点背光发光模型与实验研究

晏骥 韦敏习 蒲昱东 刘慎业 詹夏雨 林稚伟 郑建华 江少恩

新型针孔点背光发光模型与实验研究

晏骥, 韦敏习, 蒲昱东, 刘慎业, 詹夏雨, 林稚伟, 郑建华, 江少恩
PDF
导出引用
  • 纳秒级强激光(~1014 W/cm2)与固体靶相互作用可以获得高亮度的Multi-keV能段 X射线. 在当前的高能量密度物理研究中利用这样的X射线背光源照相方式可以获得高质量的物理图像, 具有重要的应用价值. 以模拟计算与神光II激光装置实验结果相结合的方式研究了激光等离子体发光模型. 在该模型的基础上改进了针孔点背光成像技术, 独立发展了针对低Z靶材料K线的准单能背向针孔点背光和针对中Z靶材料L带的高亮度侧向针孔点背光.在神光II激光装置上通过新型针孔点背光对惯性约束聚变靶丸样品成像获得了高质量的静态靶丸流线图像, 空间分辨优于10 μm. 实验结果表明新型的针孔点背光具备高亮度, 高空间分辨, 高图像衬度等优点可以广泛应用于高能量密度物理和惯性约束聚变的研究中.
    • 基金项目: 国家自然科学基金(批准号: 10775120)资助的课题.
    [1]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Yan J, Meng G W, Ding Y N, Wang Y 2008 Acta Phys. Sin. 57 985 (in Chinese) [张继彦, 杨家敏, 许琰, 杨国洪, 颜君, 孟广为, 丁耀南, 汪艳 2008 物理学报 57 985]

    [2]

    Kirkwood R K, Milovich J, Bradley D K, Schmitt M, Goldman S R, Kalantar D H, Meeker D, Jones O S, Pollaine S M, Amendt P A, Dewald E, Edwards J, Landen O L, Nikroo A 2009 Phys. Plasmas 16 012702

    [3]

    Landen O L, Boehly T R, Bradley D K, Braun D G, Callahan D A, Celliers P M, Collins G W, Dewald E L, Divol L, Glenzer S H, Hamza A, Hicks D G, Hoffman N, Izumi N, Jones O S, Kirkwood R K, Kyrala G A, Michel P, Milovich J, Munro D H, Nikroo A, Olson R E, Robey H F, Spears B K, Thomas C A, Weber S V, Wilson D C, Marinak M M, Suter L J, Hammel B A, Meyerhofer D D, Atherton J, Edwards J, Haan S W, Lindl J D, MacGowan B J, Moses E I 2010 Phys. Plasmas 17 056301

    [4]

    Matthews D L, Campbell E M, Ceglio N M, Hermes G, Kauffman R, Koppel L, Lee R, Manes K, Rupert V, Slivinsky W, Turner R, Ze F 1983 J. Appl. Phys. 54 4260

    [5]

    Kodama R, Mochizuki T, Tanaka K A, Yamanaka C 1983 Appl. Phys. Lett. 50 720

    [6]

    Bullock A B, Landen O L, Bradley D K 2001 Rev. Sci. Instrum. 72 690

    [7]

    Blue B E, Hansen J F, Tobin M T, Eder D C, Robey H F 2004 Rev. Sci. Instrum. 75 4775

    [8]

    Kuranz C C, Blue B E, Drake R P, Robey H F, Hansen J F, Knauer J P, Grosskopf M J, Krauland C, Marion D C 2006 Rev. Sci. Instrum. 77 10E327

    [9]

    Hu G Y, Zhang J Y, Zheng J, Shen B F, Liu S Y, Yang J M, Ding Y K, Hu X, Huang Y X, Du H B, Yi R Q, Lei A L, Xu Z Z 2008 Laser and Particle Beams 26 661

    [10]

    Hu G Y, Zheng J, Shen B F, Lei A L, Liu S Y, Zhang J Y, Yang J M, Ding Y K, Hu X, Huang Y X, Du H B, Yi R Q, Xu Z Z 2008 Phys. Plasmas 15 023103

    [11]

    Pu Y D, Zhang J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 015202

    [12]

    Pu Y D, Chen B L, Zhang L, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 095203

    [13]

    Babonneau D, Primout M, Girard F, Jadaud J P, Naudy M, Villette B, Depierreux S, Blancard C, Faussurier G, Fournier K B, Suter L, Kauffman R, Glenzer S, Mille M C, Grn J, Davis J 2008 Phys. Plasmas 15 092702

    [14]

    Girard F, Primout M, Villette B, Stemmler P, Jacquet L, Babonnea D, Fournier K B 2009 Phys. Plasmas 16 052704

  • [1]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Yan J, Meng G W, Ding Y N, Wang Y 2008 Acta Phys. Sin. 57 985 (in Chinese) [张继彦, 杨家敏, 许琰, 杨国洪, 颜君, 孟广为, 丁耀南, 汪艳 2008 物理学报 57 985]

    [2]

    Kirkwood R K, Milovich J, Bradley D K, Schmitt M, Goldman S R, Kalantar D H, Meeker D, Jones O S, Pollaine S M, Amendt P A, Dewald E, Edwards J, Landen O L, Nikroo A 2009 Phys. Plasmas 16 012702

    [3]

    Landen O L, Boehly T R, Bradley D K, Braun D G, Callahan D A, Celliers P M, Collins G W, Dewald E L, Divol L, Glenzer S H, Hamza A, Hicks D G, Hoffman N, Izumi N, Jones O S, Kirkwood R K, Kyrala G A, Michel P, Milovich J, Munro D H, Nikroo A, Olson R E, Robey H F, Spears B K, Thomas C A, Weber S V, Wilson D C, Marinak M M, Suter L J, Hammel B A, Meyerhofer D D, Atherton J, Edwards J, Haan S W, Lindl J D, MacGowan B J, Moses E I 2010 Phys. Plasmas 17 056301

    [4]

    Matthews D L, Campbell E M, Ceglio N M, Hermes G, Kauffman R, Koppel L, Lee R, Manes K, Rupert V, Slivinsky W, Turner R, Ze F 1983 J. Appl. Phys. 54 4260

    [5]

    Kodama R, Mochizuki T, Tanaka K A, Yamanaka C 1983 Appl. Phys. Lett. 50 720

    [6]

    Bullock A B, Landen O L, Bradley D K 2001 Rev. Sci. Instrum. 72 690

    [7]

    Blue B E, Hansen J F, Tobin M T, Eder D C, Robey H F 2004 Rev. Sci. Instrum. 75 4775

    [8]

    Kuranz C C, Blue B E, Drake R P, Robey H F, Hansen J F, Knauer J P, Grosskopf M J, Krauland C, Marion D C 2006 Rev. Sci. Instrum. 77 10E327

    [9]

    Hu G Y, Zhang J Y, Zheng J, Shen B F, Liu S Y, Yang J M, Ding Y K, Hu X, Huang Y X, Du H B, Yi R Q, Lei A L, Xu Z Z 2008 Laser and Particle Beams 26 661

    [10]

    Hu G Y, Zheng J, Shen B F, Lei A L, Liu S Y, Zhang J Y, Yang J M, Ding Y K, Hu X, Huang Y X, Du H B, Yi R Q, Xu Z Z 2008 Phys. Plasmas 15 023103

    [11]

    Pu Y D, Zhang J Y, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 015202

    [12]

    Pu Y D, Chen B L, Zhang L, Yang J M, Huang T X, Ding Y K 2011 Chin. Phys. B 20 095203

    [13]

    Babonneau D, Primout M, Girard F, Jadaud J P, Naudy M, Villette B, Depierreux S, Blancard C, Faussurier G, Fournier K B, Suter L, Kauffman R, Glenzer S, Mille M C, Grn J, Davis J 2008 Phys. Plasmas 15 092702

    [14]

    Girard F, Primout M, Villette B, Stemmler P, Jacquet L, Babonnea D, Fournier K B 2009 Phys. Plasmas 16 052704

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2243
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-28
  • 修回日期:  2012-06-04
  • 刊出日期:  2013-01-05

新型针孔点背光发光模型与实验研究

  • 1. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
    基金项目: 

    国家自然科学基金(批准号: 10775120)资助的课题.

摘要: 纳秒级强激光(~1014 W/cm2)与固体靶相互作用可以获得高亮度的Multi-keV能段 X射线. 在当前的高能量密度物理研究中利用这样的X射线背光源照相方式可以获得高质量的物理图像, 具有重要的应用价值. 以模拟计算与神光II激光装置实验结果相结合的方式研究了激光等离子体发光模型. 在该模型的基础上改进了针孔点背光成像技术, 独立发展了针对低Z靶材料K线的准单能背向针孔点背光和针对中Z靶材料L带的高亮度侧向针孔点背光.在神光II激光装置上通过新型针孔点背光对惯性约束聚变靶丸样品成像获得了高质量的静态靶丸流线图像, 空间分辨优于10 μm. 实验结果表明新型的针孔点背光具备高亮度, 高空间分辨, 高图像衬度等优点可以广泛应用于高能量密度物理和惯性约束聚变的研究中.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回