搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下固相硝基甲烷分解的分子动力学计算

张力 陈朗

高压下固相硝基甲烷分解的分子动力学计算

张力, 陈朗
PDF
导出引用
导出核心图
  • 基于ReaxFF, 采用NVT系综和Berendsen方法对0–7 GPa时和2500 K时固相硝基甲烷的 分解过程进行分子动力学计算, 通过分析硝基甲烷发生分解反应生成的碎片数量随时间的变化, 对不同压强下硝基甲烷的分解机理进行研究. 计算结果表明在0–3 GPa时, 初始分解路径为C–N键断裂和硝基甲烷的异构化; 在4–7 GPa 时, 初始分解路径为分子间质子转移和C–N, N–O键的断裂; 在硝基甲烷的第二阶段反应中存在H2O, NO, NO2, HONO, 硝基甲烷分子自身的催化反应. 硝基甲烷在高温高压下发生热分解反应生成碳团簇, 且团簇中碳原子的数量和碳团簇的空间构型随着压强的变化而变化.
    [1]

    Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72

    [2]

    Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351

    [3]

    Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667

    [4]

    Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33

    [5]

    Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395

    [6]

    Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113

    [7]

    Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1

    [8]

    Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [9]

    Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462

    [10]

    Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237

    [11]

    Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 物理学报 58 4144]

    [12]

    Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407

    [13]

    Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72

    [14]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [15]

    Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011

    [16]

    Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077

    [17]

    van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534

    [19]

    Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514

    [20]

    Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181

    [21]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [22]

    Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996

    [23]

    Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675

    [24]

    Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261

    [25]

    Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384

    [26]

    Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302

    [27]

    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964

    [28]

    Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024

    [29]

    Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961

    [30]

    Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301

    [31]

    Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [32]

    Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516

    [33]

    Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57

    [34]

    Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]

    [35]

    Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301

    [36]

    Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [37]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [38]

    Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [39]

    Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619

    [40]

    Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 物理学报 54 2847]

    [41]

    Ornellas D L1968 J. Phys. Chem. 72 2390

  • [1]

    Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72

    [2]

    Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351

    [3]

    Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667

    [4]

    Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33

    [5]

    Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395

    [6]

    Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113

    [7]

    Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1

    [8]

    Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [9]

    Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462

    [10]

    Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237

    [11]

    Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 物理学报 58 4144]

    [12]

    Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407

    [13]

    Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72

    [14]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [15]

    Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011

    [16]

    Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077

    [17]

    van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534

    [19]

    Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514

    [20]

    Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181

    [21]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [22]

    Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996

    [23]

    Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675

    [24]

    Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261

    [25]

    Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384

    [26]

    Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302

    [27]

    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964

    [28]

    Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024

    [29]

    Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961

    [30]

    Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301

    [31]

    Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [32]

    Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516

    [33]

    Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57

    [34]

    Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]

    [35]

    Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301

    [36]

    Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [37]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [38]

    Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [39]

    Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619

    [40]

    Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 物理学报 54 2847]

    [41]

    Ornellas D L1968 J. Phys. Chem. 72 2390

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1816
  • PDF下载量:  1185
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-25
  • 修回日期:  2013-05-03
  • 刊出日期:  2013-07-05

高压下固相硝基甲烷分解的分子动力学计算

  • 1. 爆炸科学与技术国家重点实验室, 北京理工大学, 北京 100081

摘要: 基于ReaxFF, 采用NVT系综和Berendsen方法对0–7 GPa时和2500 K时固相硝基甲烷的 分解过程进行分子动力学计算, 通过分析硝基甲烷发生分解反应生成的碎片数量随时间的变化, 对不同压强下硝基甲烷的分解机理进行研究. 计算结果表明在0–3 GPa时, 初始分解路径为C–N键断裂和硝基甲烷的异构化; 在4–7 GPa 时, 初始分解路径为分子间质子转移和C–N, N–O键的断裂; 在硝基甲烷的第二阶段反应中存在H2O, NO, NO2, HONO, 硝基甲烷分子自身的催化反应. 硝基甲烷在高温高压下发生热分解反应生成碳团簇, 且团簇中碳原子的数量和碳团簇的空间构型随着压强的变化而变化.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回