搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于圆台结构的超宽带极化不敏感太赫兹吸收器

莫漫漫 文岐业 陈智 杨青慧 李胜 荆玉兰 张怀武

基于圆台结构的超宽带极化不敏感太赫兹吸收器

莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武
PDF
导出引用
  • 本文提出一种基于圆台形吸收单元的超宽带、极化不敏感的超材料太赫兹吸收器. 该超材料吸收器采用金属薄膜金和介质层二氧化硅交替叠加的多层结构. 采用商业软件CST Studio Suite 2009时域求解器计算了其在0–10 THz波段内的吸收率A(ω),在2–10 THz之间实现了对入射太赫兹波的超宽频带强吸收. 仿真结果表明,由于其圆台形单元结构,在器件垂直方向上形成一系列不同尺寸的微型吸收器,产生了吸收频点相连的多频吸收峰. 利用不同吸收峰的耦合叠加效应,获得超过8 THz的超宽带太赫兹波吸收,吸收强度达到92.3%以上. 这一结构具有超宽带强吸收,360°极化不敏感以及易于加工等优越特性,因而在太赫兹波探测器、光谱成像以及隐身技术方面具有潜在的应用.
    • 基金项目: 国家自然科学基金重点项目(批准号:61131005)、教育部科学技术研究重大项目(批准号:313013)、国家高技术研究发展计划(863计划)(批准号:2011AA010204)、教育部新世纪优秀人才资助计划(批准号:NCET-11-0068)、四川省杰出青年学术技术带头人计划(批准号:2011JQ0001)、高校博士点专项科研基金(批准号:20110185130002)、中央高校基本科研业务费(批准号:ZYGX2010J034)和中国工程物理研究院太赫兹科学技术基金(批准号:CAEPTHZ201207)资助的课题.
    [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley & Sons, Inc.) pp2,3

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Avitzour Y, Urzhumov Y A, Shvetset G 2009 Phys. Rev. 79 045131

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [9]

    Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 33101

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [12]

    Noor A, Hu Z 2010 Iet. Microw. Antenna P 4 667

    [13]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [14]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 物理学报 62 104102]

    [15]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [16]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [17]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [18]

    Brown J R, Hibbins A P, Lockyear M J, Lawrence C R, Sambles J R 2008 J. Appl. Phys. 104 043105

    [19]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [20]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [21]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [22]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [23]

    Huang L, Chen H 2011 Progress In Electromagnetics Research 113 103

    [24]

    Peng X Y, Wang B, Lai S M, Zhang D H, Teng J H 2012 Opt. Express 20 27756

    [25]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [26]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [27]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [28]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

  • [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley & Sons, Inc.) pp2,3

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92

    [5]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [6]

    Avitzour Y, Urzhumov Y A, Shvetset G 2009 Phys. Rev. 79 045131

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [9]

    Diem M, Koschny T, Soukoulis C M 2009 Phys. Rev. B 79 33101

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [12]

    Noor A, Hu Z 2010 Iet. Microw. Antenna P 4 667

    [13]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [14]

    Lu L, Qu S B, Ma H, Yu F, Xia S, Xu Z, Bai P 2013 Acta Phys. Sin. 62 104102 (in Chinese) [鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏 2013 物理学报 62 104102]

    [15]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [16]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [17]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [18]

    Brown J R, Hibbins A P, Lockyear M J, Lawrence C R, Sambles J R 2008 J. Appl. Phys. 104 043105

    [19]

    Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111

    [20]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [21]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [22]

    Chen Z, Zhang Y X 2013 Chin. Phys. B 22 067802

    [23]

    Huang L, Chen H 2011 Progress In Electromagnetics Research 113 103

    [24]

    Peng X Y, Wang B, Lai S M, Zhang D H, Teng J H 2012 Opt. Express 20 27756

    [25]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [26]

    Ye Y Q, Jin Y, He S L 2010 Journal of the Optical Society of America B 27 498

    [27]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R S 2011 Opt. Lett. 36 3476

    [28]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano Lett. 12 1443

    [29]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2741
  • PDF下载量:  840
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-15
  • 修回日期:  2013-09-06
  • 刊出日期:  2013-12-05

基于圆台结构的超宽带极化不敏感太赫兹吸收器

  • 1. 电子科技大学, 电子薄膜与集成器件国家重点实验室, 成都 610054;
  • 2. 电子科技大学, 通信抗干扰技术国家级重点实验室, 成都 610054
    基金项目: 

    国家自然科学基金重点项目(批准号:61131005)、教育部科学技术研究重大项目(批准号:313013)、国家高技术研究发展计划(863计划)(批准号:2011AA010204)、教育部新世纪优秀人才资助计划(批准号:NCET-11-0068)、四川省杰出青年学术技术带头人计划(批准号:2011JQ0001)、高校博士点专项科研基金(批准号:20110185130002)、中央高校基本科研业务费(批准号:ZYGX2010J034)和中国工程物理研究院太赫兹科学技术基金(批准号:CAEPTHZ201207)资助的课题.

摘要: 本文提出一种基于圆台形吸收单元的超宽带、极化不敏感的超材料太赫兹吸收器. 该超材料吸收器采用金属薄膜金和介质层二氧化硅交替叠加的多层结构. 采用商业软件CST Studio Suite 2009时域求解器计算了其在0–10 THz波段内的吸收率A(ω),在2–10 THz之间实现了对入射太赫兹波的超宽频带强吸收. 仿真结果表明,由于其圆台形单元结构,在器件垂直方向上形成一系列不同尺寸的微型吸收器,产生了吸收频点相连的多频吸收峰. 利用不同吸收峰的耦合叠加效应,获得超过8 THz的超宽带太赫兹波吸收,吸收强度达到92.3%以上. 这一结构具有超宽带强吸收,360°极化不敏感以及易于加工等优越特性,因而在太赫兹波探测器、光谱成像以及隐身技术方面具有潜在的应用.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回