搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧离子注入纳米金刚石薄膜的微结构和电化学性能研究

王锐 胡晓君

氧离子注入纳米金刚石薄膜的微结构和电化学性能研究

王锐, 胡晓君
PDF
导出引用
  • 在纳米金刚石薄膜中注入剂量为1012 cm-2的氧离子,并进行700,800,900和1000 ℃的真空退火处理,系统研究薄膜的微结构和电化学性能结果表明,氧离子注入未退火(O120)和氧离子注入1000 ℃退火(O121000)电极的电势窗口分别为4.60 V和3.61 V,远大于其他电极的电势窗口,并且这两个样品的电极传质效率较高,说明氧离子注入和高温退火有利于提高电极的传质效率. 红外光谱测试表明,样品O120 和O121000的表面没有碳氢基团终止层,而其他样品均含有氢终止层,说明氧离子注入和高温退火破坏了薄膜表面含碳氢基团的氢终止层,提高了薄膜的电化学性能Raman光谱测试结果表明,金刚石含量较高、内应力较小和非晶石墨相无序化程度较大的样品具有较好的电化学性能;并且薄膜晶界处的非晶碳的团簇数量或者尺寸减小,样品的电化学性能提高.
    • 基金项目: 国家自然科学基金(批准号:50972129)和浙江省钱江人才计划(批准号:2010R10026)资助的课题.
    [1]

    Chailapakul O, Aksharanandana P, Frelink T 2001 Sens. Actuat. B 80 193

    [2]

    Denisova A E, Pleskov Y V 2008 Russ. J. Electrochem. 44 1083

    [3]

    Green S J, Mahe L S A, Rosseinsky D R 2013 Electrochim. Acta 107 111

    [4]

    Švorc L ubomír, Sochr Jozef, Svítková Jana 2013 Electrochim. Acta 87 503

    [5]

    Zhao G H, Shen S H, Li M F 2008 Chemosphere 73 1407

    [6]

    Zhao X Y, Zang J B, Wang Y H 2009 Electrochem Commun. 11 1297

    [7]

    Pang Y N, Zhao G H, Liu L 2009 Chin. Environ. Sci. 12 1255 (in Chinese) [庞雅宁, 赵国华, 刘磊 2009 中国环境科学 12 1255]

    [8]

    Hu H, Hu X J, Bai B W, Chen X H 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]

    [9]

    Hu X J, Ye J S, Liu H J 2011 J Appl Phys. 109 053524

    [10]

    Gu S S, Hu X J, Huang K 2013 Acta Phys. Sin. 62 118101 (in Chinese) [顾珊珊, 胡晓君, 黄凯 2013 物理学报 62 118101]

    [11]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]

    [12]

    Pleskov Y V, Krotova M D, Elkin V V 2007 Electrochim. Acta 52 5470

    [13]

    Pleskov Y V, Krotova M D, Ralchenko V G 2010 Russ. J. Electrochem. 46 1063

    [14]

    Barek J, Jandová K, Pecková K, Zima J 2007 Talanta 74 421

    [15]

    Wang S, Swope V M, Butler J E 2009 Diamond Relat. Mater. 18 669

    [16]

    Silva E L, Neto M A, Fernandes A J S, Bastos A C, Silva R F, Zheludkevich M L, Oliveira F J 2010 Diamond Relat. Mater. 19 1330

    [17]

    Liu X B, Jia X P, Zhang Z F, Huang H Li, Zhou Z X, Ma H A 2011 Chin. Phys. B 20 128102

    [18]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [19]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z Fei, Ma H A 2012 Chin. Phys. B 21 058101

    [20]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [21]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [22]

    Gu S S, Hu X J 2013 J. Appl. Phys. 114 023506

    [23]

    Haymond S, Babcock G T, Swain G M 2002 J. Am. Chem. Soc. 124 10634

    [24]

    Chen H Y, Ju H 1992 Chin. J. Anal. Chem. 9 997 (in Chinese) [陈洪渊, 鞠熀 1992 分析化学 9 997]

    [25]

    Gao M L 2010 M.S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [高明亮 2010 硕士学位论文 (合肥: 中国科学技术大学)]

    [26]

    Mcnamara K M, Williams B E, Gleason K K 1994 J. Appl. Phys. 76 2466

    [27]

    Tang C J, Neves A J, Carmo M C 2005 Appl. Phys. Lett. 86 223107

    [28]

    Tang C J, Neves A J, Fernandes A J S 2002 Diamond Relat. Mater. 11 527

    [29]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 48101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 48101]

    [30]

    Simon N, Girard H, Ballutaud D 2005 Diamond Relat. Mater. 14 1179

    [31]

    Hu X J, Ye J S, Hu H 2011 Appl. Phys. Lett. 99 131902

    [32]

    Michaelson S, Lifshitz Y, Ternyak O 2007 Diamond Relat. Mater. 16 845

    [33]

    Schwan J, Ulrich S, Batori V 1996 J. Appl. Phys. 80 440

    [34]

    Sanchez N A, Rincon C, Zambrano G 2000 Thin Solid Films 373 247

    [35]

    Abrasonis G, Gago R, Vinnichenko M 2006 Phys. Rev. B 73 125427

    [36]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [37]

    Pleskov Y V, Krotova M D, Saveliev A V, Ralchenko V G 2007 Diamond Relat. Mater. 16 2114

    [38]

    Ye H T, Sun C Q, Huang H T, Peter H 2000 Appl. Phys. Lett. 78 13

  • [1]

    Chailapakul O, Aksharanandana P, Frelink T 2001 Sens. Actuat. B 80 193

    [2]

    Denisova A E, Pleskov Y V 2008 Russ. J. Electrochem. 44 1083

    [3]

    Green S J, Mahe L S A, Rosseinsky D R 2013 Electrochim. Acta 107 111

    [4]

    Švorc L ubomír, Sochr Jozef, Svítková Jana 2013 Electrochim. Acta 87 503

    [5]

    Zhao G H, Shen S H, Li M F 2008 Chemosphere 73 1407

    [6]

    Zhao X Y, Zang J B, Wang Y H 2009 Electrochem Commun. 11 1297

    [7]

    Pang Y N, Zhao G H, Liu L 2009 Chin. Environ. Sci. 12 1255 (in Chinese) [庞雅宁, 赵国华, 刘磊 2009 中国环境科学 12 1255]

    [8]

    Hu H, Hu X J, Bai B W, Chen X H 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 物理学报 61 148101]

    [9]

    Hu X J, Ye J S, Liu H J 2011 J Appl Phys. 109 053524

    [10]

    Gu S S, Hu X J, Huang K 2013 Acta Phys. Sin. 62 118101 (in Chinese) [顾珊珊, 胡晓君, 黄凯 2013 物理学报 62 118101]

    [11]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 物理学报 59 7410]

    [12]

    Pleskov Y V, Krotova M D, Elkin V V 2007 Electrochim. Acta 52 5470

    [13]

    Pleskov Y V, Krotova M D, Ralchenko V G 2010 Russ. J. Electrochem. 46 1063

    [14]

    Barek J, Jandová K, Pecková K, Zima J 2007 Talanta 74 421

    [15]

    Wang S, Swope V M, Butler J E 2009 Diamond Relat. Mater. 18 669

    [16]

    Silva E L, Neto M A, Fernandes A J S, Bastos A C, Silva R F, Zheludkevich M L, Oliveira F J 2010 Diamond Relat. Mater. 19 1330

    [17]

    Liu X B, Jia X P, Zhang Z F, Huang H Li, Zhou Z X, Ma H A 2011 Chin. Phys. B 20 128102

    [18]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [19]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z Fei, Ma H A 2012 Chin. Phys. B 21 058101

    [20]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [21]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [22]

    Gu S S, Hu X J 2013 J. Appl. Phys. 114 023506

    [23]

    Haymond S, Babcock G T, Swain G M 2002 J. Am. Chem. Soc. 124 10634

    [24]

    Chen H Y, Ju H 1992 Chin. J. Anal. Chem. 9 997 (in Chinese) [陈洪渊, 鞠熀 1992 分析化学 9 997]

    [25]

    Gao M L 2010 M.S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [高明亮 2010 硕士学位论文 (合肥: 中国科学技术大学)]

    [26]

    Mcnamara K M, Williams B E, Gleason K K 1994 J. Appl. Phys. 76 2466

    [27]

    Tang C J, Neves A J, Carmo M C 2005 Appl. Phys. Lett. 86 223107

    [28]

    Tang C J, Neves A J, Fernandes A J S 2002 Diamond Relat. Mater. 11 527

    [29]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 48101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 48101]

    [30]

    Simon N, Girard H, Ballutaud D 2005 Diamond Relat. Mater. 14 1179

    [31]

    Hu X J, Ye J S, Hu H 2011 Appl. Phys. Lett. 99 131902

    [32]

    Michaelson S, Lifshitz Y, Ternyak O 2007 Diamond Relat. Mater. 16 845

    [33]

    Schwan J, Ulrich S, Batori V 1996 J. Appl. Phys. 80 440

    [34]

    Sanchez N A, Rincon C, Zambrano G 2000 Thin Solid Films 373 247

    [35]

    Abrasonis G, Gago R, Vinnichenko M 2006 Phys. Rev. B 73 125427

    [36]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [37]

    Pleskov Y V, Krotova M D, Saveliev A V, Ralchenko V G 2007 Diamond Relat. Mater. 16 2114

    [38]

    Ye H T, Sun C Q, Huang H T, Peter H 2000 Appl. Phys. Lett. 78 13

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1816
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-14
  • 修回日期:  2014-04-02
  • 刊出日期:  2014-07-05

氧离子注入纳米金刚石薄膜的微结构和电化学性能研究

  • 1. 浙江工业大学材料科学与工程学院, 杭州 310014
    基金项目: 

    国家自然科学基金(批准号:50972129)和浙江省钱江人才计划(批准号:2010R10026)资助的课题.

摘要: 在纳米金刚石薄膜中注入剂量为1012 cm-2的氧离子,并进行700,800,900和1000 ℃的真空退火处理,系统研究薄膜的微结构和电化学性能结果表明,氧离子注入未退火(O120)和氧离子注入1000 ℃退火(O121000)电极的电势窗口分别为4.60 V和3.61 V,远大于其他电极的电势窗口,并且这两个样品的电极传质效率较高,说明氧离子注入和高温退火有利于提高电极的传质效率. 红外光谱测试表明,样品O120 和O121000的表面没有碳氢基团终止层,而其他样品均含有氢终止层,说明氧离子注入和高温退火破坏了薄膜表面含碳氢基团的氢终止层,提高了薄膜的电化学性能Raman光谱测试结果表明,金刚石含量较高、内应力较小和非晶石墨相无序化程度较大的样品具有较好的电化学性能;并且薄膜晶界处的非晶碳的团簇数量或者尺寸减小,样品的电化学性能提高.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回