搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酞菁铜与MoS2(0001)范德瓦耳斯异质结研究

曹宁通 张雷 吕路 谢海鹏 黄寒 牛冬梅 高永立

酞菁铜与MoS2(0001)范德瓦耳斯异质结研究

曹宁通, 张雷, 吕路, 谢海鹏, 黄寒, 牛冬梅, 高永立
PDF
导出引用
  • 利用光电子能谱、原子力显微镜以及低能电子衍射等 表面研究手段系统研究了真空沉积生长的酞菁铜薄膜与衬底MoS2(0001)之间的范德瓦耳斯异质结界面电子结构和几何结构. 角分辨光电子能谱清楚地再现了MoS2(0001)衬底在Γ点附近的能带结构. 低能电子衍射结果表明,CuPc薄膜在MoS2(0001)表面沿着衬底表面[1120],[1210]和[2110]三个晶向有序生长,反映了衬底对CuPc的影响. 原子力显微镜结果表明,CuPc在MoS2 衬底上遵循层状-岛状生长模式:在低生长厚度下(单层薄膜厚度约为0.3 nm),CuPc分子平面平行于MoS2表面上形成均匀连续的薄膜; 在较高的沉积厚度下,CuPc沿衬底晶向形成棒状晶粒,表现出明显的各向异性. 光电子能谱显示界面偶极层为0.07 eV,而且能谱在膜厚1.2 nm饱和,揭示了酞菁铜与MoS2(0001)范德瓦耳斯异质结的能级结构.
    • 基金项目: 国家自然科学基金(批准号:51173205)、中央高等学校基本科研基金(批准号:2013zzts155)和中南大学贵重仪器设备开放共享基金(批准号:CSUZC2014023)资助的课题.
    [1]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766

    [2]

    Fuhrer M S, Hone J 2013 Nature Nanotechnol. 8 146

    [3]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [4]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnol. 6 147

    [6]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [7]

    Kang J, Li J B, Li S S, Xia J B, Wang L W 2013 Nano Lett. 13 5485

    [8]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311

    [9]

    Chen W B, Yang W F, Zou H J, Tang J X, Deng L F, Li P T 2011 Acta Phys. Sin. 60 117107 (in Chinese) [陈卫兵, 杨伟丰, 邹豪杰, 汤建新, 邓林峰, 黎沛涛 2011 物理学报 60 117107]

    [10]

    Wang N N, Sheng Y J, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602

    [11]

    Nardi M V, Detto F, Aversa L, Verucchi R, Salviati G, Iannotta S, Casarin M 2013 Phys. Chem. Chem. Phys. 15 12864

    [12]

    Zhao J Q, Ding M, Zhang T Y, Zhang N Y, Pang Y T, Ji Y J, Chen Y, Wang F X, Fu G 2012 Chin. Phys. B 21 057110

    [13]

    Wu Q H, Hong G, Ng T W, Lee S T 2012 Appl. Phys. Lett. 100 161603

    [14]

    Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64

    [15]

    Koma A, Sunouchi K 1985 J. Vac. Sci. Technol. B 3 724

    [16]

    Ludwig C, Strohmaier R, Petersen J, Gompf B, Eisenmenger W 1994 J. Vac. Sci. Technol. B 12 1963

    [17]

    Okudaira K K, Hasegawa S, Ishii H, Seki K, Harada Y, Ueno N 1999 J. Appl. Phys. 85 6453

    [18]

    Fukuma T, Kobayashi K, Yamada H, Matsushige K 2004 J. Appl. Phys. 95 4742

    [19]

    Boker T H, Severin R, Muller A, Janowitz C, Manzke R 2001 Phys. Rev. B 64 235305

    [20]

    Mahatha S K, Patel K D, Menon K S R 2012 J. Phys.: Condens. Matter 24 475504

    [21]

    Huang H, Sun J T, Feng Y P, Chen W, Wee A T S 2011 Phys. Chem. Chem. Phys 13 20933

    [22]

    Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F Geohegan D B 2013 J. Am. Chem. Soc. 135 3680

    [23]

    McMenamin J C, Spicer W E 1977 Phys. Rev. B 16 5474

    [24]

    Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705

    [25]

    Chen W, Chen S, Huang H, Qi D C, Gao X Y, Wee A T S 2008 Appl. Phys. Lett. 92 063308

    [26]

    Gao Y L Yan L 2003 Chem. Phys. Lett. 380 451

    [27]

    Ding H J, Gao Y L, Cinchetti M, Wstenberg J P, Sánchez-Albaneda M, Andreyev O, Bauer M, Aeschlimann M 2008 Phys. Rev. B 78 075311

  • [1]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766

    [2]

    Fuhrer M S, Hone J 2013 Nature Nanotechnol. 8 146

    [3]

    Dong H M 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [4]

    Wu M S, Xu B, Liu G, Ouyang C Y 2012 Acta Phys. Sin. 61 227102 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2012 物理学报 61 227102]

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnol. 6 147

    [6]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [7]

    Kang J, Li J B, Li S S, Xia J B, Wang L W 2013 Nano Lett. 13 5485

    [8]

    Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Grigorenko A N, Geim A K, Casiraghi C, Neto A H C, Novoselov K S 2013 Science 340 1311

    [9]

    Chen W B, Yang W F, Zou H J, Tang J X, Deng L F, Li P T 2011 Acta Phys. Sin. 60 117107 (in Chinese) [陈卫兵, 杨伟丰, 邹豪杰, 汤建新, 邓林峰, 黎沛涛 2011 物理学报 60 117107]

    [10]

    Wang N N, Sheng Y J, Zang Y, Jiang Y D 2010 Chin. Phys. B 19 038602

    [11]

    Nardi M V, Detto F, Aversa L, Verucchi R, Salviati G, Iannotta S, Casarin M 2013 Phys. Chem. Chem. Phys. 15 12864

    [12]

    Zhao J Q, Ding M, Zhang T Y, Zhang N Y, Pang Y T, Ji Y J, Chen Y, Wang F X, Fu G 2012 Chin. Phys. B 21 057110

    [13]

    Wu Q H, Hong G, Ng T W, Lee S T 2012 Appl. Phys. Lett. 100 161603

    [14]

    Wang C G, Irfan I, Turinske A J, Gao Y L 2012 Thin Solid Films 525 64

    [15]

    Koma A, Sunouchi K 1985 J. Vac. Sci. Technol. B 3 724

    [16]

    Ludwig C, Strohmaier R, Petersen J, Gompf B, Eisenmenger W 1994 J. Vac. Sci. Technol. B 12 1963

    [17]

    Okudaira K K, Hasegawa S, Ishii H, Seki K, Harada Y, Ueno N 1999 J. Appl. Phys. 85 6453

    [18]

    Fukuma T, Kobayashi K, Yamada H, Matsushige K 2004 J. Appl. Phys. 95 4742

    [19]

    Boker T H, Severin R, Muller A, Janowitz C, Manzke R 2001 Phys. Rev. B 64 235305

    [20]

    Mahatha S K, Patel K D, Menon K S R 2012 J. Phys.: Condens. Matter 24 475504

    [21]

    Huang H, Sun J T, Feng Y P, Chen W, Wee A T S 2011 Phys. Chem. Chem. Phys 13 20933

    [22]

    Xiao K, Deng W, Keum J K, Yoon M, Vlassiouk I V, Clark K W, Li A P, Kravchenko I I, Gu G, Payzant E A, Sumpter B G, Smith S C, Browning J F Geohegan D B 2013 J. Am. Chem. Soc. 135 3680

    [23]

    McMenamin J C, Spicer W E 1977 Phys. Rev. B 16 5474

    [24]

    Yamane H, Yabuuchi Y, Fukagawa H, Kera S, Okudaira K K, Ueno N 2006 J. Appl. Phys. 99 093705

    [25]

    Chen W, Chen S, Huang H, Qi D C, Gao X Y, Wee A T S 2008 Appl. Phys. Lett. 92 063308

    [26]

    Gao Y L Yan L 2003 Chem. Phys. Lett. 380 451

    [27]

    Ding H J, Gao Y L, Cinchetti M, Wstenberg J P, Sánchez-Albaneda M, Andreyev O, Bauer M, Aeschlimann M 2008 Phys. Rev. B 78 075311

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2242
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-10
  • 修回日期:  2014-04-29
  • 刊出日期:  2014-08-05

酞菁铜与MoS2(0001)范德瓦耳斯异质结研究

  • 1. 中南大学先进材料超微结构与超快过程研究所, 长沙 410083;
  • 2. Department of Physics and Astronomy, University of Rochester, Rochester 14627, USA
    基金项目: 

    国家自然科学基金(批准号:51173205)、中央高等学校基本科研基金(批准号:2013zzts155)和中南大学贵重仪器设备开放共享基金(批准号:CSUZC2014023)资助的课题.

摘要: 利用光电子能谱、原子力显微镜以及低能电子衍射等 表面研究手段系统研究了真空沉积生长的酞菁铜薄膜与衬底MoS2(0001)之间的范德瓦耳斯异质结界面电子结构和几何结构. 角分辨光电子能谱清楚地再现了MoS2(0001)衬底在Γ点附近的能带结构. 低能电子衍射结果表明,CuPc薄膜在MoS2(0001)表面沿着衬底表面[1120],[1210]和[2110]三个晶向有序生长,反映了衬底对CuPc的影响. 原子力显微镜结果表明,CuPc在MoS2 衬底上遵循层状-岛状生长模式:在低生长厚度下(单层薄膜厚度约为0.3 nm),CuPc分子平面平行于MoS2表面上形成均匀连续的薄膜; 在较高的沉积厚度下,CuPc沿衬底晶向形成棒状晶粒,表现出明显的各向异性. 光电子能谱显示界面偶极层为0.07 eV,而且能谱在膜厚1.2 nm饱和,揭示了酞菁铜与MoS2(0001)范德瓦耳斯异质结的能级结构.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回