搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中尺度沙尘暴对量子卫星通信信道的影响及性能仿真

聂敏 尚鹏钢 杨光 张美玲 裴昌幸

中尺度沙尘暴对量子卫星通信信道的影响及性能仿真

聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸
PDF
导出引用
  • 中尺度沙尘暴是美国内华达州、我国北部及中东国家等地沙尘天气的常见形式. 为了研究中尺度沙尘暴对量子卫星通信信道的影响, 首先分析了沙尘暴的物理特性, 根据中尺度沙尘暴的扩散模型, 提出了中尺度沙尘特性与量子纠缠度的关系; 然后仿真了沙尘特性对量子卫星信道参数的影响. 结果表明, 如果沙尘扩散时间为12 h, 中尺度沙尘粒子半径分别为1和25μm, 则量子卫星信道的纠缠度依次为0.6和0.4, 信道的利用率分别为0.9和0.8, 信道容量分别为0.95和0.8. 由此可见, 量子信道的各种参数与沙尘暴的特性密切相关. 因此, 为了提高量子卫星通信的可靠性, 应根据沙尘灾变程度, 自适应调整卫星信道的各种参数.
    • 基金项目: 国家自然科学基金(批准号: 61172071, 61201194)和陕西省自然科学基础研究计划(批准号: 2014JQ8318)资助的课题.
    [1]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [2]

    Kuzmich A, Bowen W P, Boozer A D, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [3]

    Mandel O, Greiner M, Widera A, Rom T, Theodor W, Bloch I 2003 Nature 425 937

    [4]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]

    [5]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [6]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [7]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Phys. B 23 010305

    [8]

    Nie M, Zhang L, Liu X H 2013 Acta Phys. Sin. 62 230303 (in Chinese) [聂敏, 张琳, 刘晓慧 2013 物理学报 62 230303]

    [9]

    Zhao J H, Zhang Q 2010 Acta Phys. Sin. 59 8954 (in Chinese) [赵建华, 张强 2010 物理学报 59 8954]

    [10]

    Zhang Z S, Dong Z G, Zhao A G 2008 Chin. Sci. Bull. 53 1953 (in Chinese) [张正偲, 董治国, 赵爱国 2008 科学通报 53 1953]

    [11]

    Wang P X, Sun L D, Yue P, Niu S J 2007 J. Desert Res. 27 1077 (in Chinese) [王鹏祥, 孙兰东, 岳平, 牛生杰 2007 中国沙漠 27 1077]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834]

    [13]

    Wang Y T, Zhao Y H, Yang X X, Zhao Z G, Xue Y L, Gao Q X, Ren Z H 2002 J. Safety Environ. 2 18 (in Chinese) [王耀庭, 赵燕华, 杨新兴, 张志刚, 薛玉兰, 高庆先, 任阵海 2002 安全与环境学报 2 18]

    [14]

    Liu C T, Cheng L S 1997 Acta Meterorologica Sin. 55 726 (in Chinese) [刘春涛,程麟生 1997 气象学报 55 726]

    [15]

    Anthes R A, L Y H, Guo X R 1991 Meteorol. Sci. Technol. 1 40 (in Chinese) [Anthes R A, 吕越华, 郭肖容 1991 气象科技 1 40]

    [16]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [17]

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese) [张永德 2010 高等量子力学 (北京: 科学出版社) 第24页]

    [18]

    Li J D, Sheng M, Li H Y 2011 Communications Network Infrastructure (Vol. 2) (Beijing: Higher Education Press) pp94-101 (in Chinese) [李建东, 盛敏, 李红艳 2011 通信网络基础 (第二版) (北京: 高等教育出版社) 第94–101页]

    [19]

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [20]

    Yan Y, Pei C X, Shi R J, Han B B, Zhang L 2007 J. Xidian Univ. (Nature Science Edition) 34 708 (in Chinese) [闫毅, 裴昌幸, 师瑞娟, 韩宝彬, 张磊 2007 西安电子科技大学学报(自然科学版) 34 708]

  • [1]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 430 54

    [2]

    Kuzmich A, Bowen W P, Boozer A D, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [3]

    Mandel O, Greiner M, Widera A, Rom T, Theodor W, Bloch I 2003 Nature 425 937

    [4]

    Xue L, Nie M, Liu X H 2013 Acta Phys. Sin. 62 170305 (in Chinese) [薛乐, 聂敏, 刘晓慧 2013 物理学报 62 170305]

    [5]

    Liao X P, Fang M F, Fang J S, Zhu Q Q 2014 Chin. Phys. B 23 020304

    [6]

    Yu X T, Zhang Z C, Xu J 2014 Chin. Phys. B 23 010303

    [7]

    Chang Y, Xu C X, Zhang S B, Yan L L 2014 Chin. Phys. B 23 010305

    [8]

    Nie M, Zhang L, Liu X H 2013 Acta Phys. Sin. 62 230303 (in Chinese) [聂敏, 张琳, 刘晓慧 2013 物理学报 62 230303]

    [9]

    Zhao J H, Zhang Q 2010 Acta Phys. Sin. 59 8954 (in Chinese) [赵建华, 张强 2010 物理学报 59 8954]

    [10]

    Zhang Z S, Dong Z G, Zhao A G 2008 Chin. Sci. Bull. 53 1953 (in Chinese) [张正偲, 董治国, 赵爱国 2008 科学通报 53 1953]

    [11]

    Wang P X, Sun L D, Yue P, Niu S J 2007 J. Desert Res. 27 1077 (in Chinese) [王鹏祥, 孙兰东, 岳平, 牛生杰 2007 中国沙漠 27 1077]

    [12]

    Yan Y, Pei C X, Han B B, Zhao N 2008 Chin. J. Radio Sci. 23 834 (in Chinese) [闫毅, 裴昌幸, 韩宝彬, 赵楠 2008 电波科学学报 23 834]

    [13]

    Wang Y T, Zhao Y H, Yang X X, Zhao Z G, Xue Y L, Gao Q X, Ren Z H 2002 J. Safety Environ. 2 18 (in Chinese) [王耀庭, 赵燕华, 杨新兴, 张志刚, 薛玉兰, 高庆先, 任阵海 2002 安全与环境学报 2 18]

    [14]

    Liu C T, Cheng L S 1997 Acta Meterorologica Sin. 55 726 (in Chinese) [刘春涛,程麟生 1997 气象学报 55 726]

    [15]

    Anthes R A, L Y H, Guo X R 1991 Meteorol. Sci. Technol. 1 40 (in Chinese) [Anthes R A, 吕越华, 郭肖容 1991 气象科技 1 40]

    [16]

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese) [张永德 2010 量子力学 (北京: 科学出版社) 第343页]

    [17]

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese) [张永德 2010 高等量子力学 (北京: 科学出版社) 第24页]

    [18]

    Li J D, Sheng M, Li H Y 2011 Communications Network Infrastructure (Vol. 2) (Beijing: Higher Education Press) pp94-101 (in Chinese) [李建东, 盛敏, 李红艳 2011 通信网络基础 (第二版) (北京: 高等教育出版社) 第94–101页]

    [19]

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第83页]

    [20]

    Yan Y, Pei C X, Shi R J, Han B B, Zhang L 2007 J. Xidian Univ. (Nature Science Edition) 34 708 (in Chinese) [闫毅, 裴昌幸, 师瑞娟, 韩宝彬, 张磊 2007 西安电子科技大学学报(自然科学版) 34 708]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1944
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-24
  • 修回日期:  2014-08-11
  • 刊出日期:  2014-12-05

中尺度沙尘暴对量子卫星通信信道的影响及性能仿真

  • 1. 西安邮电大学通信与信息工程学院, 西安 710121;
  • 2. 西北工业大学电子信息学院, 西安 710072;
  • 3. 西安电子科技大学, 综合业务网国家重点实验室, 西安 710071
    基金项目: 

    国家自然科学基金(批准号: 61172071, 61201194)和陕西省自然科学基础研究计划(批准号: 2014JQ8318)资助的课题.

摘要: 中尺度沙尘暴是美国内华达州、我国北部及中东国家等地沙尘天气的常见形式. 为了研究中尺度沙尘暴对量子卫星通信信道的影响, 首先分析了沙尘暴的物理特性, 根据中尺度沙尘暴的扩散模型, 提出了中尺度沙尘特性与量子纠缠度的关系; 然后仿真了沙尘特性对量子卫星信道参数的影响. 结果表明, 如果沙尘扩散时间为12 h, 中尺度沙尘粒子半径分别为1和25μm, 则量子卫星信道的纠缠度依次为0.6和0.4, 信道的利用率分别为0.9和0.8, 信道容量分别为0.95和0.8. 由此可见, 量子信道的各种参数与沙尘暴的特性密切相关. 因此, 为了提高量子卫星通信的可靠性, 应根据沙尘灾变程度, 自适应调整卫星信道的各种参数.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回