搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型缓冲层分区电场调制横向双扩散超结功率器件

段宝兴 曹震 袁嵩 袁小宁 杨银堂

引用本文:
Citation:

新型缓冲层分区电场调制横向双扩散超结功率器件

段宝兴, 曹震, 袁嵩, 袁小宁, 杨银堂

New super junction lateral double-diffused MOSFET with electric field modulation by differently doping the buffered layer

Duan Bao-Xing, Cao Zhen, Yuan Song, Yuan Xiao-Ning, Yang Yin-Tang
PDF
导出引用
  • 为了突破传统横向双扩散金属-氧化物-半导体器件(lateral double-diffused MOSFET)击穿电压与比导通电阻的极限关系, 本文在缓冲层横向双扩散超结功率器件(super junction LDMOS-SJ LDMOS)结构基础上, 提出了具有缓冲层分区新型SJ-LDMOS结构. 新结构利用电场调制效应将分区缓冲层产生的电场峰引入超结(super junction)表面而优化了SJ-LDMOS的表面电场分布, 缓解了横向LDMOS器件由于受纵向电场影响使横向电场分布不均匀、横向单位耐压量低的问题. 利用仿真分析软件ISE分析表明, 优化条件下, 当缓冲层分区为3时, 提出的缓冲层分区SJ-LDMOS表面电场最优, 击穿电压达到饱和时较一般LDMOS结构提高了50%左右, 较缓冲层SJ-LDMOS结构提高了32%左右, 横向单位耐压量达到18.48 V/μm. 击穿电压为382 V的缓冲层分区SJ-LDMOS, 比导通电阻为25.6 mΩ·cm2, 突破了一般LDMOS击穿电压为254 V时比导通电阻为71.8 mΩ·cm2的极限关系.
    In order to break through the limit relationship between the breakdown voltage and specific on-resistance for LDMOS (lateral double-diffused MOSFET), a new super junction LDMOS is proposed with the electric field modulation by differently doping the buffered layer in this paper for the first time based on the buffered SJ-LDMOS. The new electric field introduced by the differently doping buffered layer, owing to the electric field modulation, is brought to the surface electric field of SJ-LDMOS, which alleviates a low lateral breakdown voltage due to the uneven electric field distribution for the LDMOS affected by the vertical electric field. Through the ISE simulation, the results are obtained that the surface electric field is optimized for the proposed SJ-LDMOS when the number of differently doping buffered layers is three. The saturated breakdown voltage for the new SJ-LDMOS is increased by about 50% compared with that for conventional LDMOS, and improved by about 32% compared with that for buffered SJ-LDMOS. The lateral breakdown voltage for unit length is increased to 18.48 V/μm. For the proposed SJ-LDMOS, the specific on-resistance is 25.6 mΩ· cm2 with a breakdown voltage of 382 V, which already breaks the limit relationship of 71.8 mΩ·cm2 with a breakdown voltage of 254 V in the conventional LDMOS.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339900, 2015CB351906)和国家自然科学基金重点项目(批准号: 61234006, 61334002)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2014CB339900, 2015CB351906) and the Key Program of the National Natural Science Foundation of China (Grant Nos. 61234006, 61334002).
    [1]

    Wei J, Luo X R, Shi X L, Tian R C, Zhang B, Li Z J 2014 Proceedings of the 17th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p127

    [2]

    He Y D, Zhang G G, Zhang X 2014 Proceedings of the 17^th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p171

    [3]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [5]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs Santa Barbara, USA, May 26-30, 2005 p163

    [6]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hong Kong, May 27-30, 2005 p1399

    [7]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [8]

    Duan B X, Yang Y T 2011 Micro Nano Lett. 6 881

    [9]

    Appels J A, Collet M G, Hart P A H, Vaes H M J 1980 Philips J. Res. 35 1

    [10]

    Luo Y C, Luo X R, Hu G Y, Fan Y H, Li P C, Wei J, Tan Q, Zhang B 2014 Chin. Phys. B 23 077306

    [11]

    Hu S D, Wu X H, Zhu Z, Jin J J, Chen Y H 2014 Chin. Phys. B 23 067101

    [12]

    Duan B X, Yang Y T 2011 IETE Tech. Rev. 28 503

    [13]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 36

    [14]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 276

    [15]

    Duan B X, Zhang B, Li Z J 2006 J. Semicond. 27 886

    [16]

    Duan B X, Zhang B, Li Z J 2005 Solid State Electron. 49 1965

    [17]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Dev. Lett. 27 377

    [18]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [19]

    Duan B X, Yang Y T, Zhang B Li Z J 2008 Chin. J. Semicond. 29 677

    [20]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Dev. Lett. 30 1329

    [21]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Dev. 58 2057

    [22]

    Duan B X, Yang Y T, Zhang B 2010 Solid State Electron. 54 685

    [23]

    Duan B X, Yang Y T 2012 Sci. China: Inf. Sci. 55 473

    [24]

    Duan B X, Yang Y T 2012 Micro Nano Lett. 7 9

    [25]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 247302]

    [26]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [27]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302 (in Chinese) [段宝兴, 杨银堂 2014 物理学报 63 057302]

    [28]

    SE TCAD Manuals, release 10.0, Synopsys Coporation, Switzerland.

    [29]

    Michael A, Vladimir R 1985 International Electron Devices Meeting Washington, USA, Dec. 1-4, 1985 p736

  • [1]

    Wei J, Luo X R, Shi X L, Tian R C, Zhang B, Li Z J 2014 Proceedings of the 17th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p127

    [2]

    He Y D, Zhang G G, Zhang X 2014 Proceedings of the 17^th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p171

    [3]

    Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

    [4]

    Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

    [5]

    Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs Santa Barbara, USA, May 26-30, 2005 p163

    [6]

    Zhang B, Chen L, Wu J, Li Z J 2005 International Conference on Communications, Circuits and System Hong Kong, May 27-30, 2005 p1399

    [7]

    Duan B X, Yang Y T, Zhang B 2009 IEEE Electron Dev. Lett. 30 305

    [8]

    Duan B X, Yang Y T 2011 Micro Nano Lett. 6 881

    [9]

    Appels J A, Collet M G, Hart P A H, Vaes H M J 1980 Philips J. Res. 35 1

    [10]

    Luo Y C, Luo X R, Hu G Y, Fan Y H, Li P C, Wei J, Tan Q, Zhang B 2014 Chin. Phys. B 23 077306

    [11]

    Hu S D, Wu X H, Zhu Z, Jin J J, Chen Y H 2014 Chin. Phys. B 23 067101

    [12]

    Duan B X, Yang Y T 2011 IETE Tech. Rev. 28 503

    [13]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 36

    [14]

    Duan B X, Yang Y T 2012 IETE Tech. Rev. 29 276

    [15]

    Duan B X, Zhang B, Li Z J 2006 J. Semicond. 27 886

    [16]

    Duan B X, Zhang B, Li Z J 2005 Solid State Electron. 49 1965

    [17]

    Duan B X, Zhang B, Li Z J 2006 IEEE Electron Dev. Lett. 27 377

    [18]

    Duan B X, Zhang B, Li Z J 2007 Chin. Phys. Lett. 24 1342

    [19]

    Duan B X, Yang Y T, Zhang B Li Z J 2008 Chin. J. Semicond. 29 677

    [20]

    Duan B X, Yang Y T, Zhang B, Hong X F 2009 IEEE Electron Dev. Lett. 30 1329

    [21]

    Duan B X, Yang Y T 2011 IEEE Trans. Electron Dev. 58 2057

    [22]

    Duan B X, Yang Y T, Zhang B 2010 Solid State Electron. 54 685

    [23]

    Duan B X, Yang Y T 2012 Sci. China: Inf. Sci. 55 473

    [24]

    Duan B X, Yang Y T 2012 Micro Nano Lett. 7 9

    [25]

    Duan B X, Yang Y T, Chen K J 2012 Acta Phys. Sin. 61 247302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 247302]

    [26]

    Duan B X, Yang Y T, Chen J 2012 Acta Phys. Sin. 61 227302 (in Chinese) [段宝兴, 杨银堂, 陈敬 2012 物理学报 61 227302]

    [27]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302 (in Chinese) [段宝兴, 杨银堂 2014 物理学报 63 057302]

    [28]

    SE TCAD Manuals, release 10.0, Synopsys Coporation, Switzerland.

    [29]

    Michael A, Vladimir R 1985 International Electron Devices Meeting Washington, USA, Dec. 1-4, 1985 p736

计量
  • 文章访问数:  1650
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-04
  • 修回日期:  2014-08-15
  • 刊出日期:  2014-12-05

新型缓冲层分区电场调制横向双扩散超结功率器件

  • 1. 西安电子科技大学微电子学院, 宽禁带半导体材料与器件教育部重点实验室, 西安 710071
    基金项目: 

    国家重点基础研究发展计划(批准号: 2014CB339900, 2015CB351906)和国家自然科学基金重点项目(批准号: 61234006, 61334002)资助的课题.

摘要: 为了突破传统横向双扩散金属-氧化物-半导体器件(lateral double-diffused MOSFET)击穿电压与比导通电阻的极限关系, 本文在缓冲层横向双扩散超结功率器件(super junction LDMOS-SJ LDMOS)结构基础上, 提出了具有缓冲层分区新型SJ-LDMOS结构. 新结构利用电场调制效应将分区缓冲层产生的电场峰引入超结(super junction)表面而优化了SJ-LDMOS的表面电场分布, 缓解了横向LDMOS器件由于受纵向电场影响使横向电场分布不均匀、横向单位耐压量低的问题. 利用仿真分析软件ISE分析表明, 优化条件下, 当缓冲层分区为3时, 提出的缓冲层分区SJ-LDMOS表面电场最优, 击穿电压达到饱和时较一般LDMOS结构提高了50%左右, 较缓冲层SJ-LDMOS结构提高了32%左右, 横向单位耐压量达到18.48 V/μm. 击穿电压为382 V的缓冲层分区SJ-LDMOS, 比导通电阻为25.6 mΩ·cm2, 突破了一般LDMOS击穿电压为254 V时比导通电阻为71.8 mΩ·cm2的极限关系.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回