搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率脉冲电子束辐照SiO2的光学和激光损伤性能

钟勉 杨亮 任玮 向霞 刘翔 练友运 徐世珍 郭德成 郑万国 袁晓东

高功率脉冲电子束辐照SiO2的光学和激光损伤性能

钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东
PDF
导出引用
  • 研究了不同剂量的60 kW高功率脉冲电子束辐照对高纯熔石英玻璃的微观结构、光学性能和激光损伤特性的影响规律. 光学显微图像表明, 辐照后熔石英样品由于热效应导致表面破裂, 裂纹密度和尺寸随辐照剂量增加而增大, 采用原子力显微镜分析表面裂纹的微观形貌, 裂纹宽度约1 um, 同时样品表面分布着大量尺寸约0.1–1μm的碎片颗粒. 吸收光谱测试表明, 所有样品均在394 nm处出现微弱的吸收峰, 吸收强度随着电子束辐照剂量增大呈现先增加后减小的趋势. 荧光光谱测试发现辐照前后样品均有3个荧光带, 分别位于460, 494和520 nm, 荧光强度随辐照剂量的变化趋势与吸收光谱一致. 利用355 nm激光研究了不同剂量电子束辐照对熔石英激光损伤阈值的影响, 结果表明熔石英的损伤阈值随着辐照剂量的增加而降低. 在剂量较低时, 导致熔石英激光损伤阈值下降的原因主要是色心缺陷; 剂量较高时, 导致损伤阈值降低的原因主要是样品表面产生的大量微裂纹和碎片颗粒对激光的调制和吸收.
    • 基金项目: 国家自然科学基金(批准号: 61178018)和中央高校基本科研业务费(批准号: ZYGX2012J057)资助的课题.
    [1]

    Holtkamp N 2007 Fusion Eng. Des. 82 427

    [2]

    Ibarra A, Hodgson E R 2004 Nucl. Instrum. Meth. B 218 29

    [3]

    Yamamoto S, Shikama T, Belyakov V, Farnum E, Hodgson E, Nishitani T, Costley A, de Kock L, Walker C, Janeschitz G, 2000 J. Nucl. Mater. 283 60

    [4]

    Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M J, Riley M O, Feit M D 2004 Proc. SPIE 5341 San Jose, USA, January 24-29, 2004 p84

    [5]

    Devine R A 1993 J. Non-Cryst. Solids. 152 50

    [6]

    Manzano J, Morono A, Hodgson E R 2009 Fusion Eng. Des. 84 1245

    [7]

    González S, Morono A, Hodgson E R 2005 Fusion Eng. Des. 74 831

    [8]

    León M, Martín P, Bravo D, López F, Ibarra A, Rascón A, Mota F 2008 J. Nucl. Mater. 374 386

    [9]

    León M, Martín P, Vila R, Molla J, Ibarra A 2009 Fusion Eng. Des. 84 1174

    [10]

    Galeener F L, Kerwin D B, Miller A J, Mikkelsen J C 1993 Phys. Rev. B 47 7760

    [11]

    N uritdinov I, Masharipov K Y, Doniev M 2003 Glass Phys. Chem. 29 11

    [12]

    Cannas M, Agnello S, Gelardi F, Boscaino R, Trukhin A, Liblik P, Lushchik C, Kink M, Maksimov Y, Kink R 2004 J. Phys.: Condens. Matter 16 7931

    [13]

    Martín P, León M, Ibarra A, Hodgson E R 2011 J. Nucl. Mater. 417 818

    [14]

    Fitting H J, Barfels T, Von Czarnowski A, Trukhin A N 2000 Mater. Sci. Eng. B 71 109

    [15]

    D' Amico M, Messina F, Cannas M, Leone M, Boscaino R 2009 Phys. Rev. B 79 064203

    [16]

    Nuccio L, Agnello S, Boscaino R, Boizot B, Parlato A 2007 J. Non-Cryst. Solids 353 581

    [17]

    Zoubir A, Rivero C, Grodsky R, Richardson K, Richardson M, Cardinal T, Couzi M 2006 Phys. Rev. B 73 224117

    [18]

    Sergeev P B, Sergeev A P, Zvorykin V D 2007 Quantum Electron. 37 711

    [19]

    Sergeev P B, Sergeev A P 2010 Quantum Electron. 40 804

    [20]

    Guizard S, Martin P, Petite G, D'Oliveira P, Meynadier P 1996 J. Phys.: Condens. Matter 8 1281

    [21]

    Skuja L, Hirano M, Hosono H, Kajihara K 2005 Phys. Stat. Sol. 2 15

    [22]

    Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923

    [23]

    Chen L, Wang T S, Zhang G F, Yang K J, Peng H B, Zhang L M 2013 Chin. Phys. B 22 126101

    [24]

    Lian Y Y, Liu X, Xu Z Y, Song J P, Yu Y 2013 Fusion Eng. Des. 88 1694

    [25]

    Chen X Q, Zu X T, Zheng W G, Jiang X D, L H B, Ren H, Zhang Y Z, Liu C M 2006 Acta Phys. Sin. 55 1201 (in Chinese) [陈习权, 祖小涛, 郑万国, 蒋晓东, 吕海兵, 任寰, 张艳珍, 刘春明 2006 物理学报 55 1201]

    [26]

    Wang P W, Kimberlin K R, Chengyu W, Ying T, Lin G Q, Aimin W, Jun X J 2005 Mater. Chem. Phys. 94 252

    [27]

    Skuja L 1994 J. Non-Cryst. Solids 167 229

    [28]

    Skuja L 1998 J. Non-Cryst. Solids 239 16

    [29]

    Skuja L, Streletsky A, Pakovich A 1984 Solid State Commun. 50 1069

    [30]

    Sakurai Y 2006 J. Non-Cryst. Solids 352 2917

    [31]

    Sakurai Y, Nagasawa K 2001 J. Non-Cryst. Solids 291 86

    [32]

    Wang F, Qin X F, Ren S H, Yang L X, Meng Y F, Ming Y F 2013 Mater. Res. Bull. 48 3640

    [33]

    Lin J, Huang Y, Zhang J, Gao J M, Ding X X, Huang Z X, Tang C C, Hu L, Chen D F 2007 Chem. Mater. 19 2585

    [34]

    Hua J R, Zu X T, Li L, Xiang X, Chen M, Jiang X D, Yuan X D, Zheng W G 2010 Acta Phys. Sin. 59 2519 (in Chinese) [花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国 2010 物理学报 59 2519]

    [35]

    Hua J R, Li L, Xiang X, Zu X T 2011 Acta Phys. Sin. 60 044206 (in Chinese) [花金荣, 李莉, 向霞, 祖小涛 2011 物理学报 60 044206]

    [36]

    Jiang Y 2012 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋勇 2012 博士学位论文 (成都: 电子科技大学)]

  • [1]

    Holtkamp N 2007 Fusion Eng. Des. 82 427

    [2]

    Ibarra A, Hodgson E R 2004 Nucl. Instrum. Meth. B 218 29

    [3]

    Yamamoto S, Shikama T, Belyakov V, Farnum E, Hodgson E, Nishitani T, Costley A, de Kock L, Walker C, Janeschitz G, 2000 J. Nucl. Mater. 283 60

    [4]

    Campbell J H, Hawley-Fedder R A, Stolz C J, Menapace J A, Borden M R, Whitman P K, Yu J, Runkel M J, Riley M O, Feit M D 2004 Proc. SPIE 5341 San Jose, USA, January 24-29, 2004 p84

    [5]

    Devine R A 1993 J. Non-Cryst. Solids. 152 50

    [6]

    Manzano J, Morono A, Hodgson E R 2009 Fusion Eng. Des. 84 1245

    [7]

    González S, Morono A, Hodgson E R 2005 Fusion Eng. Des. 74 831

    [8]

    León M, Martín P, Bravo D, López F, Ibarra A, Rascón A, Mota F 2008 J. Nucl. Mater. 374 386

    [9]

    León M, Martín P, Vila R, Molla J, Ibarra A 2009 Fusion Eng. Des. 84 1174

    [10]

    Galeener F L, Kerwin D B, Miller A J, Mikkelsen J C 1993 Phys. Rev. B 47 7760

    [11]

    N uritdinov I, Masharipov K Y, Doniev M 2003 Glass Phys. Chem. 29 11

    [12]

    Cannas M, Agnello S, Gelardi F, Boscaino R, Trukhin A, Liblik P, Lushchik C, Kink M, Maksimov Y, Kink R 2004 J. Phys.: Condens. Matter 16 7931

    [13]

    Martín P, León M, Ibarra A, Hodgson E R 2011 J. Nucl. Mater. 417 818

    [14]

    Fitting H J, Barfels T, Von Czarnowski A, Trukhin A N 2000 Mater. Sci. Eng. B 71 109

    [15]

    D' Amico M, Messina F, Cannas M, Leone M, Boscaino R 2009 Phys. Rev. B 79 064203

    [16]

    Nuccio L, Agnello S, Boscaino R, Boizot B, Parlato A 2007 J. Non-Cryst. Solids 353 581

    [17]

    Zoubir A, Rivero C, Grodsky R, Richardson K, Richardson M, Cardinal T, Couzi M 2006 Phys. Rev. B 73 224117

    [18]

    Sergeev P B, Sergeev A P, Zvorykin V D 2007 Quantum Electron. 37 711

    [19]

    Sergeev P B, Sergeev A P 2010 Quantum Electron. 40 804

    [20]

    Guizard S, Martin P, Petite G, D'Oliveira P, Meynadier P 1996 J. Phys.: Condens. Matter 8 1281

    [21]

    Skuja L, Hirano M, Hosono H, Kajihara K 2005 Phys. Stat. Sol. 2 15

    [22]

    Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923

    [23]

    Chen L, Wang T S, Zhang G F, Yang K J, Peng H B, Zhang L M 2013 Chin. Phys. B 22 126101

    [24]

    Lian Y Y, Liu X, Xu Z Y, Song J P, Yu Y 2013 Fusion Eng. Des. 88 1694

    [25]

    Chen X Q, Zu X T, Zheng W G, Jiang X D, L H B, Ren H, Zhang Y Z, Liu C M 2006 Acta Phys. Sin. 55 1201 (in Chinese) [陈习权, 祖小涛, 郑万国, 蒋晓东, 吕海兵, 任寰, 张艳珍, 刘春明 2006 物理学报 55 1201]

    [26]

    Wang P W, Kimberlin K R, Chengyu W, Ying T, Lin G Q, Aimin W, Jun X J 2005 Mater. Chem. Phys. 94 252

    [27]

    Skuja L 1994 J. Non-Cryst. Solids 167 229

    [28]

    Skuja L 1998 J. Non-Cryst. Solids 239 16

    [29]

    Skuja L, Streletsky A, Pakovich A 1984 Solid State Commun. 50 1069

    [30]

    Sakurai Y 2006 J. Non-Cryst. Solids 352 2917

    [31]

    Sakurai Y, Nagasawa K 2001 J. Non-Cryst. Solids 291 86

    [32]

    Wang F, Qin X F, Ren S H, Yang L X, Meng Y F, Ming Y F 2013 Mater. Res. Bull. 48 3640

    [33]

    Lin J, Huang Y, Zhang J, Gao J M, Ding X X, Huang Z X, Tang C C, Hu L, Chen D F 2007 Chem. Mater. 19 2585

    [34]

    Hua J R, Zu X T, Li L, Xiang X, Chen M, Jiang X D, Yuan X D, Zheng W G 2010 Acta Phys. Sin. 59 2519 (in Chinese) [花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国 2010 物理学报 59 2519]

    [35]

    Hua J R, Li L, Xiang X, Zu X T 2011 Acta Phys. Sin. 60 044206 (in Chinese) [花金荣, 李莉, 向霞, 祖小涛 2011 物理学报 60 044206]

    [36]

    Jiang Y 2012 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [蒋勇 2012 博士学位论文 (成都: 电子科技大学)]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1897
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-18
  • 修回日期:  2014-07-08
  • 刊出日期:  2014-12-05

高功率脉冲电子束辐照SiO2的光学和激光损伤性能

  • 1. 电子科技大学物理电子学院, 成都 610054;
  • 2. 核工业西南物理研究院, 成都 610041;
  • 3. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
    基金项目: 

    国家自然科学基金(批准号: 61178018)和中央高校基本科研业务费(批准号: ZYGX2012J057)资助的课题.

摘要: 研究了不同剂量的60 kW高功率脉冲电子束辐照对高纯熔石英玻璃的微观结构、光学性能和激光损伤特性的影响规律. 光学显微图像表明, 辐照后熔石英样品由于热效应导致表面破裂, 裂纹密度和尺寸随辐照剂量增加而增大, 采用原子力显微镜分析表面裂纹的微观形貌, 裂纹宽度约1 um, 同时样品表面分布着大量尺寸约0.1–1μm的碎片颗粒. 吸收光谱测试表明, 所有样品均在394 nm处出现微弱的吸收峰, 吸收强度随着电子束辐照剂量增大呈现先增加后减小的趋势. 荧光光谱测试发现辐照前后样品均有3个荧光带, 分别位于460, 494和520 nm, 荧光强度随辐照剂量的变化趋势与吸收光谱一致. 利用355 nm激光研究了不同剂量电子束辐照对熔石英激光损伤阈值的影响, 结果表明熔石英的损伤阈值随着辐照剂量的增加而降低. 在剂量较低时, 导致熔石英激光损伤阈值下降的原因主要是色心缺陷; 剂量较高时, 导致损伤阈值降低的原因主要是样品表面产生的大量微裂纹和碎片颗粒对激光的调制和吸收.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回