搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯原理的Cosserat弹性杆动力学模型

刘延柱 薛纭

基于高斯原理的Cosserat弹性杆动力学模型

刘延柱, 薛纭
PDF
导出引用
导出核心图
  • 在动力学普遍原理中, 高斯最小拘束原理的特点是可通过寻求函数极值的变分方法直接得出运动规律, 而无须建立动力学微分方程. Kirchhoff动力学比拟方法以刚性截面的姿态表述弹性细杆的几何形态, 并发展为以弧坐标s和时间t为自变量的弹性杆分析力学. 由于截面姿态的局部微小改变沿弧坐标的积累不受限制, Kirchhoff模型适合描述弹性杆的超大变形. Cosserat弹性杆模型考虑了Kirchhoff模型忽略的截面剪切变形、中心线伸缩变形和分布力等因素, 是更符合实际弹性杆的动力学模型. 建立了基于高斯原理的Cosserat弹性杆的分析力学模型, 导出拘束函数的普遍形式, 以平面运动为例进行讨论. 关于弹性杆空间不可自相侵占的特殊问题, 给出相应的约束条件对可能运动施加限制, 以避免自相侵占情况发生.
    • 基金项目: 国家自然科学基金(批准号: 11372195)资助的课题.
    [1]

    Liu Y Z 2001 Advanced Dynamics (Beijing: High Education Press) (in Chinese) [刘延柱 2001 高等动力学 (北京: 高等教育出版社)]

    [2]

    Popov E P, Vereshchagin A F, Zenkevich S A 1978 Manipulative Robots, Dynamics and Algorithm (Moscow: Science) (in Russian) [Попов ЕП, Берещагин АФ, Зенкевич С А 1978 Манипулядионные роботы, динамики и алгоритмы(Москва:Наука)]

    [3]

    Lilov L, Lorer M 1982 Z. Angew. Math. Mech. 62 539

    [4]

    Kalaba R E, Udwadia F E 1993 Trans. ASME J. Appl. Mech. 60 662

    [5]

    Kalaba R, Natsuyama H, Udwadia F 2004 Int. J. General Syst. 33 63

    [6]

    Dong L L, Yan G R, Du Y T, Yu J J, Niu B L, Li R L 2001 Acta Armament. 22 347 (in Chinese) [董龙雷, 闫桂荣, 杜彦亭, 余建军, 牛宝良, 李荣林 2001 兵工学报 22 347]

    [7]

    Hao M W, Ye Z Y 2011 J. Guangxi Univ. (Nat. Sci. Ed.) 36 195 (in Chinese) [郝名望, 叶正寅2011广西大学学报(自然科学版) 36 195]

    [8]

    Liu Y Z, Zu J W 2004 Acta Mech. 167 29

    [9]

    Liu Y Z, Xue Y 2005 Chin. Quart. Mech. 26 1 (in Chinese) [刘延柱, 薛纭 2005力学季刊 26 1]

    [10]

    Liu Y Z, Sheng L W 2007 Acta Mech. Sin. 23 215

    [11]

    Liu Y Z, Xue Y 2011 Chin. J. Theor. Appl. Mech. 43 1151 (in Chinese) [刘延柱, 薛纭 2011 力学学报 43 1151]

    [12]

    Liu Y Z 2009 Chin. Phys. B 18 1

    [13]

    13Liu Y Z, Xue Y 2011 Appl. Math. Mech. 32 570 (in Chinese) [刘延柱, 薛纭2011 应用数学和力学 32 570]

    [14]

    Liu Y Z 2012 Chin. J. Theor. Appl. Mech. 44 832 (in Chinese) [刘延柱 2012 力学学报 44 832]

    [15]

    Liu Y Z, Xue Y 2004 Tech. Mech. 24 206

    [16]

    Xue Y, Liu Y Z, Chen L Q 2005 Chin. J. Theor. Appl. Mech. 37 485 (in Chinese) [薛纭, 刘延柱, 陈立群 2005 力学学报 37 485]

    [17]

    Xue Y, Liu Y Z 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱 2006 物理学报 55 3845]

    [18]

    Xue Y, Weng D W 2009 Acta Phys. Sin. 58 34 (in Chinese) [薛纭, 翁德玮 2009 物理学报 58 34]

  • [1]

    Liu Y Z 2001 Advanced Dynamics (Beijing: High Education Press) (in Chinese) [刘延柱 2001 高等动力学 (北京: 高等教育出版社)]

    [2]

    Popov E P, Vereshchagin A F, Zenkevich S A 1978 Manipulative Robots, Dynamics and Algorithm (Moscow: Science) (in Russian) [Попов ЕП, Берещагин АФ, Зенкевич С А 1978 Манипулядионные роботы, динамики и алгоритмы(Москва:Наука)]

    [3]

    Lilov L, Lorer M 1982 Z. Angew. Math. Mech. 62 539

    [4]

    Kalaba R E, Udwadia F E 1993 Trans. ASME J. Appl. Mech. 60 662

    [5]

    Kalaba R, Natsuyama H, Udwadia F 2004 Int. J. General Syst. 33 63

    [6]

    Dong L L, Yan G R, Du Y T, Yu J J, Niu B L, Li R L 2001 Acta Armament. 22 347 (in Chinese) [董龙雷, 闫桂荣, 杜彦亭, 余建军, 牛宝良, 李荣林 2001 兵工学报 22 347]

    [7]

    Hao M W, Ye Z Y 2011 J. Guangxi Univ. (Nat. Sci. Ed.) 36 195 (in Chinese) [郝名望, 叶正寅2011广西大学学报(自然科学版) 36 195]

    [8]

    Liu Y Z, Zu J W 2004 Acta Mech. 167 29

    [9]

    Liu Y Z, Xue Y 2005 Chin. Quart. Mech. 26 1 (in Chinese) [刘延柱, 薛纭 2005力学季刊 26 1]

    [10]

    Liu Y Z, Sheng L W 2007 Acta Mech. Sin. 23 215

    [11]

    Liu Y Z, Xue Y 2011 Chin. J. Theor. Appl. Mech. 43 1151 (in Chinese) [刘延柱, 薛纭 2011 力学学报 43 1151]

    [12]

    Liu Y Z 2009 Chin. Phys. B 18 1

    [13]

    13Liu Y Z, Xue Y 2011 Appl. Math. Mech. 32 570 (in Chinese) [刘延柱, 薛纭2011 应用数学和力学 32 570]

    [14]

    Liu Y Z 2012 Chin. J. Theor. Appl. Mech. 44 832 (in Chinese) [刘延柱 2012 力学学报 44 832]

    [15]

    Liu Y Z, Xue Y 2004 Tech. Mech. 24 206

    [16]

    Xue Y, Liu Y Z, Chen L Q 2005 Chin. J. Theor. Appl. Mech. 37 485 (in Chinese) [薛纭, 刘延柱, 陈立群 2005 力学学报 37 485]

    [17]

    Xue Y, Liu Y Z 2006 Acta Phys. Sin. 55 3845 (in Chinese) [薛纭, 刘延柱 2006 物理学报 55 3845]

    [18]

    Xue Y, Weng D W 2009 Acta Phys. Sin. 58 34 (in Chinese) [薛纭, 翁德玮 2009 物理学报 58 34]

  • [1] 刘延柱, 薛纭. 受拉扭弹性细杆超螺旋形态的定性分析. 物理学报, 2009, 58(9): 5936-5941. doi: 10.7498/aps.58.5936
    [2] 薛纭, 王鹏. Cosserat弹性杆动力学普遍定理的守恒量问题. 物理学报, 2011, 60(11): 114501. doi: 10.7498/aps.60.114501
    [3] 陈立群, 刘延柱, 薛 纭. Kirchhoff弹性杆动力学建模的分析力学方法. 物理学报, 2006, 55(8): 3845-3851. doi: 10.7498/aps.55.3845
    [4] 黄 磊, 包光伟, 刘延柱. 弹性细杆弯曲的Kirchhoff方程的违约校正求解. 物理学报, 2005, 54(6): 2457-2462. doi: 10.7498/aps.54.2457
    [5] 王炜, 张琪昌, 靳刚. 非对称截面Kirchhoff弹性细杆模型简化方法研究. 物理学报, 2012, 61(6): 064602. doi: 10.7498/aps.61.064602
    [6] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动. 物理学报, 2005, 54(11): 4989-4993. doi: 10.7498/aps.54.4989
    [7] 陈立群, 薛 纭, 刘延柱. 受曲面约束弹性细杆的平衡问题. 物理学报, 2004, 53(7): 2040-2045. doi: 10.7498/aps.53.2040
    [8] 刘延柱, 盛立伟. 圆截面弹性螺旋杆的稳定性与振动. 物理学报, 2007, 56(4): 2305-2310. doi: 10.7498/aps.56.2305
    [9] 薛纭, 翁德玮, 陈立群. 精确Cosserat弹性杆动力学的分析力学方法. 物理学报, 2013, 62(4): 044601. doi: 10.7498/aps.62.044601
    [10] 薛纭, 翁德玮. 超细长弹性杆动力学的Gauss原理. 物理学报, 2009, 58(1): 34-39. doi: 10.7498/aps.58.34
    [11] 解伯民. 弹性薄壁杆件的动力稳定. 物理学报, 1956, 1623(3): 246-260.
    [12] 薛 纭, 陈立群, 刘延柱. 弹性细杆平衡的动态稳定性. 物理学报, 2004, 53(8): 2424-2428. doi: 10.7498/aps.53.2424
    [13] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [14] 刘延柱, 薛纭. Kirchhoff弹性直杆在力螺旋作用下的稳定性. 物理学报, 2009, 58(10): 6737-6742. doi: 10.7498/aps.58.6737
    [15] 胡海昌. 弹性薄壁杆件的大扭转. 物理学报, 1956, 1601(2): 139-151.
    [16] 解伯民. 弹性薄壁杆件的振动理论. 物理学报, 1956, 1623(3): 261-270.
    [17] 胡海昌. 开口截面弹性薄壁杆件的稳定性. 物理学报, 1956, 1601(2): 152-169.
    [18] 邹凤梧, 颜家壬. 粘弹性阻尼对弹性杆内纵向孤波运动的影响. 物理学报, 1989, 38(7): 1329-1333. doi: 10.7498/aps.38.1329
    [19] 颜家壬;;邹凤梧. 粘弹性阻尼对弹性杆内纵向孤波运动的影响. 物理学报, 1989, 38(8): 1322-1328.
    [20] 崔建新, 高海波, 洪文学. 超细长弹性杆的Mei对称性及其Noether守恒量. 物理学报, 2009, 58(11): 7426-7430. doi: 10.7498/aps.58.7426
  • 引用本文:
    Citation:
计量
  • 文章访问数:  390
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-15
  • 修回日期:  2014-09-25
  • 刊出日期:  2015-02-20

基于高斯原理的Cosserat弹性杆动力学模型

  • 1. 上海交通大学工程力学系, 上海 200240;
  • 2. 上海应用技术学院机械工程学院, 上海 201418
    基金项目: 

    国家自然科学基金(批准号: 11372195)资助的课题.

摘要: 在动力学普遍原理中, 高斯最小拘束原理的特点是可通过寻求函数极值的变分方法直接得出运动规律, 而无须建立动力学微分方程. Kirchhoff动力学比拟方法以刚性截面的姿态表述弹性细杆的几何形态, 并发展为以弧坐标s和时间t为自变量的弹性杆分析力学. 由于截面姿态的局部微小改变沿弧坐标的积累不受限制, Kirchhoff模型适合描述弹性杆的超大变形. Cosserat弹性杆模型考虑了Kirchhoff模型忽略的截面剪切变形、中心线伸缩变形和分布力等因素, 是更符合实际弹性杆的动力学模型. 建立了基于高斯原理的Cosserat弹性杆的分析力学模型, 导出拘束函数的普遍形式, 以平面运动为例进行讨论. 关于弹性杆空间不可自相侵占的特殊问题, 给出相应的约束条件对可能运动施加限制, 以避免自相侵占情况发生.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回