搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有时滞反馈的非对称双稳系统中的振动共振研究

杨秀妮 杨云峰

具有时滞反馈的非对称双稳系统中的振动共振研究

杨秀妮, 杨云峰
PDF
导出引用
  • 研究了具有时滞反馈的非对称双稳系统中的振动共振现象. 在绝热近似条件下, 应用快慢变量分离法得到系统响应振幅的解析表达式Q, 分析了时滞参数α和不对称参数r对振动共振现象的影响. 结果表明: 在Q-α平台上, α可以诱导响应幅值的极大值以输入高频信号和低频信号的周期出现. 不对称参数并不影响共振发生的位置, 但是能够增强响应幅值. 在Q-B (B为高频信号振幅)平台上, 共振发生的位置BVR随着α呈现两种不同的周期关系, 且周期分别为输入高频信号和低频信号的周期. 在Q-Ω (Ω高频信号频率)平台上, 随着时滞参数的增大, 当B较小时, 在Ω的小值区间内, Q呈现出多重共振现象, 在Ω的大值区间, Q趋于定值.
    • 基金项目: 国家自然科学基金(批准号: 71103143)和陕西省科学技术研究发展计划项目(批准号: 2013KJXX-40)资助的课题.
    [1]

    Landa P, McClintock P 2000 J. Phys. A 33 L433

    [2]

    Gitterman M 2001 J. Phys. A 34 L355

    [3]

    Zaikin A A, López L, Baltanás J P, Kurths J, Sanjuán M A F 2002 Phys. Rev. E 66 011106

    [4]

    Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J, Sanjuán M A F 2003 Phys.Rev.E 67 066119

    [5]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [6]

    Chizhevsky V N, Giacomelli G 2006 Phys. Rev. E 73 022103

    [7]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [8]

    Yao C G, Liu Y, Zhan M 2011 Phys. Rev. E83 061122

    [9]

    Gandhimathi V M, Rajasekar S, Kurths J 2006 Phys. Lett. A 360 279

    [10]

    Gandhimathi V M, Rajasekar S 2007 Phys. Scr. 76 693

    [11]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [12]

    Yang J H, Zhu H 2012 Chaos 22 013112

    [13]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [14]

    Zhang L, Xie T T, Luo M K 2014 Acta Phys. Sin. 63 010506 (in Chinese) [张路, 谢天婷, 罗懋康 2014 物理学报 63 010506]

    [15]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Phys. Rev. E 80 046608

    [16]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Chaos 19 043128

    [17]

    Yang J H, Liu H G, Chen G 2012 Acta Phys. Sin. 61 180503 (in Chinese) [杨建华, 刘后广, 程刚 2012 物理学报 61 180503]

    [18]

    Wang C J 2011 Chin. Phys. Lett. 28 090504

    [19]

    Deng B, Wang J, Wei X L 2009 Chaos 19 013117

    [20]

    Deng B, Wang J, Wei X L, Yu H T, Li H Y 2014 Phys. Rev. E 89 062916

    [21]

    Yang L J, Liu W H, Yi Ming, Wang C J, Zhu Q M, Zhan X, Jia Y 2012 Phys. Rev. E 86 016209

    [22]

    Wang C J, Yang K L 2012 Chin. J. Phys. 50 607

    [23]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2013 Ecol. Complex. 15 33

    [24]

    Ramana Reddy D V, Sen A, Johnston G L 1998 Phys. Rev. Lett. 80 5109

    [25]

    Jia Z L 2009 Int. J. Theor. Phys. 48 226

    [26]

    Wang C J, Yi M, Yang K L, Yang L J 2012 BMC Syst. Biol. 6 S9

    [27]

    Yang J H, Liu X B 2010 J. Phys. A: Math. Theor. 43 122001

    [28]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 物理学报 61 010505]

    [29]

    Wang C J, Yang K L, Qu S X 2014 Int. J. Mod. Phys. B 28 1450103

    [30]

    Yang J H, Liu X B 2010 Phys. Scr. 82 025006

    [31]

    Daza A, Wagemakers A, Rajasekar S, Sanjuán M A F 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 411

    [32]

    Hu D L, Yang J H, Liu X B 2014 Comput. Biol. Med. 45 80

    [33]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2011 Phys. Rev.E 83 066205

    [34]

    Wang C J, Dai Z C, Mei D C 2011 Commun. Theor. Phys. 56 1041

    [35]

    Wio H S, Bouzat S 1999 Braz. J. Phys. 29 136

    [36]

    Chizhevsky V N 2008 Int. J. Bifurcat. Chaos 18 1767

    [37]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2011 Int. J. Bifurcat. Chaos 21 275

  • [1]

    Landa P, McClintock P 2000 J. Phys. A 33 L433

    [2]

    Gitterman M 2001 J. Phys. A 34 L355

    [3]

    Zaikin A A, López L, Baltanás J P, Kurths J, Sanjuán M A F 2002 Phys. Rev. E 66 011106

    [4]

    Baltanás J P, López L, Blechman I I, Landa P S, Zaikin A, Kurths J, Sanjuán M A F 2003 Phys.Rev.E 67 066119

    [5]

    Chizhevsky V N, Smeu E, Giacomelli G 2003 Phys. Rev. Lett. 91 220602

    [6]

    Chizhevsky V N, Giacomelli G 2006 Phys. Rev. E 73 022103

    [7]

    Chizhevsky V N, Giacomelli G 2008 Phys. Rev. E 77 051126

    [8]

    Yao C G, Liu Y, Zhan M 2011 Phys. Rev. E83 061122

    [9]

    Gandhimathi V M, Rajasekar S, Kurths J 2006 Phys. Lett. A 360 279

    [10]

    Gandhimathi V M, Rajasekar S 2007 Phys. Scr. 76 693

    [11]

    Yang J H, Liu X B 2010 Chaos 20 033124

    [12]

    Yang J H, Zhu H 2012 Chaos 22 013112

    [13]

    Yang J H, Zhu H 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1316

    [14]

    Zhang L, Xie T T, Luo M K 2014 Acta Phys. Sin. 63 010506 (in Chinese) [张路, 谢天婷, 罗懋康 2014 物理学报 63 010506]

    [15]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Phys. Rev. E 80 046608

    [16]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2009 Chaos 19 043128

    [17]

    Yang J H, Liu H G, Chen G 2012 Acta Phys. Sin. 61 180503 (in Chinese) [杨建华, 刘后广, 程刚 2012 物理学报 61 180503]

    [18]

    Wang C J 2011 Chin. Phys. Lett. 28 090504

    [19]

    Deng B, Wang J, Wei X L 2009 Chaos 19 013117

    [20]

    Deng B, Wang J, Wei X L, Yu H T, Li H Y 2014 Phys. Rev. E 89 062916

    [21]

    Yang L J, Liu W H, Yi Ming, Wang C J, Zhu Q M, Zhan X, Jia Y 2012 Phys. Rev. E 86 016209

    [22]

    Wang C J, Yang K L 2012 Chin. J. Phys. 50 607

    [23]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2013 Ecol. Complex. 15 33

    [24]

    Ramana Reddy D V, Sen A, Johnston G L 1998 Phys. Rev. Lett. 80 5109

    [25]

    Jia Z L 2009 Int. J. Theor. Phys. 48 226

    [26]

    Wang C J, Yi M, Yang K L, Yang L J 2012 BMC Syst. Biol. 6 S9

    [27]

    Yang J H, Liu X B 2010 J. Phys. A: Math. Theor. 43 122001

    [28]

    Yang J H, Liu X B 2012 Acta Phys. Sin. 61 010505 (in Chinese) [杨建华, 刘先斌 2012 物理学报 61 010505]

    [29]

    Wang C J, Yang K L, Qu S X 2014 Int. J. Mod. Phys. B 28 1450103

    [30]

    Yang J H, Liu X B 2010 Phys. Scr. 82 025006

    [31]

    Daza A, Wagemakers A, Rajasekar S, Sanjuán M A F 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 411

    [32]

    Hu D L, Yang J H, Liu X B 2014 Comput. Biol. Med. 45 80

    [33]

    Jeevarathinam C, Rajasekar S, Sanjuán M A F 2011 Phys. Rev.E 83 066205

    [34]

    Wang C J, Dai Z C, Mei D C 2011 Commun. Theor. Phys. 56 1041

    [35]

    Wio H S, Bouzat S 1999 Braz. J. Phys. 29 136

    [36]

    Chizhevsky V N 2008 Int. J. Bifurcat. Chaos 18 1767

    [37]

    Jeyakumari S, Chinnathambi V, Rajasekar S, Sanjuán M A F 2011 Int. J. Bifurcat. Chaos 21 275

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1683
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-16
  • 修回日期:  2015-01-07
  • 刊出日期:  2015-04-05

具有时滞反馈的非对称双稳系统中的振动共振研究

  • 1. 西安科技大学理学院, 西安 710054
    基金项目: 

    国家自然科学基金(批准号: 71103143)和陕西省科学技术研究发展计划项目(批准号: 2013KJXX-40)资助的课题.

摘要: 研究了具有时滞反馈的非对称双稳系统中的振动共振现象. 在绝热近似条件下, 应用快慢变量分离法得到系统响应振幅的解析表达式Q, 分析了时滞参数α和不对称参数r对振动共振现象的影响. 结果表明: 在Q-α平台上, α可以诱导响应幅值的极大值以输入高频信号和低频信号的周期出现. 不对称参数并不影响共振发生的位置, 但是能够增强响应幅值. 在Q-B (B为高频信号振幅)平台上, 共振发生的位置BVR随着α呈现两种不同的周期关系, 且周期分别为输入高频信号和低频信号的周期. 在Q-Ω (Ω高频信号频率)平台上, 随着时滞参数的增大, 当B较小时, 在Ω的小值区间内, Q呈现出多重共振现象, 在Ω的大值区间, Q趋于定值.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回