搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构

陈鹏 孟晨 孙连峰 王成 杨森

基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构

陈鹏, 孟晨, 孙连峰, 王成, 杨森
PDF
导出引用
  • 基于Gabor框架的窄脉冲信号采样及重构效果已经得到验证, 其解决了有限新息率(finite rate of innovation, FRI)采样方法无法在波形未知的情况下重构出脉冲波形的问题.但是目前的Gabor框架采样系统的窗函数构造复杂且难以物理实现.本文将指数再生窗函数引入Gabor框架, 将窗函数序列调制部分简化为一阶巴特沃斯模拟滤波器, 构造了Gabor系数重构所需要的压缩感知(compressed sensing, CS)测量矩阵.为了使得测量矩阵满足信号精确重构所需的约束等距特性(restricted isometry property, RIP), 根据高阶指数样条函数能量聚集特性, 选择了最优的窗函数支撑宽度, 推导了信号重构所需的约束条件, 还对其鲁棒性进行了分析.本文通过仿真实验对上述分析进行了有效验证, 该系统可应用于测试仪器、状态监测、雷达及通信领域等多种背景下的窄脉冲信号采样与重构.
    • 基金项目: 国家自然科学基金(批准号: 61372039)资助的课题.
    [1]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]

    [2]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 物理学报 62 174212]

    [3]

    Zhang J C, Fu N, Qiao L Y, Peng X Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩, 彭喜元 2014 物理学报 63 030701]

    [4]

    Omer Bar-Ilan, Eldar Y C 2014 IEEE Trans. Signal Processing 62 1796

    [5]

    Herman M A, Strohmer T 2009 IEEE Trans. Signal Processing 57 2275

    [6]

    Razzaque M A, Bleakley C, Dobson S 2013 ACM Transactions on Sensor Networks 10 5

    [7]

    Mishali M, Eldar Y C, Dounaevsky O 2011 IET circuits, devices & systems 5 8

    [8]

    Tropp J A, Laska J N, Duarte M F 2010 IEEE Trans. Inf. Theory 56 520

    [9]

    Michaeli T, Eldar Y C 2012 Signal Processing, IEEE Transactions on. 60 1121

    [10]

    Urigiien J A, Eldar Y C, Dragotti P L 2012 Compressed Sensing: Theory and Applications (Cambridge, U.K.: Cambridge Univ. Press) p148

    [11]

    Matusiak E 2012 IEEE Ttransactions on Signal Processing 60 1134

    [12]

    Kloos T, Stöckler J 2013 Journal of Approximation Theory 184 209

    [13]

    Jeffrey D B, Michael C, David H, Yirong J 2013 IEEE Trans. Signal Processing 62 1694

    [14]

    Xie Z P, Chen S C 2013 Journal of Computer Research and Development 49 580 (in Chinese) [谢志鹏, 陈松灿 2013 计算机研究与发展 49 580]

    [15]

    Feichtinger H G 1981 Monatshefte fr Mathematik 92 269

    [16]

    Mishali M, Eldar Y C 2009 Information Theory Workshop 2009.IEEE

    [17]

    Daubenchies I 1992 Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics) p97

    [18]

    Unser M, Blu T 2005 IEEE Trans. Signal Processing 53 1425

    [19]

    Qu C W, He Y, Liu W H, Li N 2009 Frames Theory and Applications (Beijing: National Defense Industy Press) p152 (in Chinese) [曲长文, 何友, 刘卫华, 李楠 2009 框架理论及应用(北京: 国防工业出版社) 第152页]

    [20]

    Tropp J A, Laska J N, Duarte M F, Romberg J K, Baraniuk R G 2010 IEEE Trans Inf. Theory 56 520

    [21]

    Xu Z Q 2012 Scientia Sinica (Mathematica) 42 865 (in Chinese) [许志强 中国科学:数学 42 865]

    [22]

    Haupt J, Nowak R 2010 Proc. 44th Annual Conf. on Information Sciences and Systems Princeton, NJ, March 2010

    [23]

    Xu G W, Xu Z Q 2013 arXiv:1301.0373

    [24]

    Rudelson M, Vershynin R 2008 Communications on Pure and Applied Mathematics 61 1025

  • [1]

    Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]

    [2]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 物理学报 62 174212]

    [3]

    Zhang J C, Fu N, Qiao L Y, Peng X Y 2014 Acta Phys. Sin. 63 030701 (in Chinese) [张京超, 付宁, 乔立岩, 彭喜元 2014 物理学报 63 030701]

    [4]

    Omer Bar-Ilan, Eldar Y C 2014 IEEE Trans. Signal Processing 62 1796

    [5]

    Herman M A, Strohmer T 2009 IEEE Trans. Signal Processing 57 2275

    [6]

    Razzaque M A, Bleakley C, Dobson S 2013 ACM Transactions on Sensor Networks 10 5

    [7]

    Mishali M, Eldar Y C, Dounaevsky O 2011 IET circuits, devices & systems 5 8

    [8]

    Tropp J A, Laska J N, Duarte M F 2010 IEEE Trans. Inf. Theory 56 520

    [9]

    Michaeli T, Eldar Y C 2012 Signal Processing, IEEE Transactions on. 60 1121

    [10]

    Urigiien J A, Eldar Y C, Dragotti P L 2012 Compressed Sensing: Theory and Applications (Cambridge, U.K.: Cambridge Univ. Press) p148

    [11]

    Matusiak E 2012 IEEE Ttransactions on Signal Processing 60 1134

    [12]

    Kloos T, Stöckler J 2013 Journal of Approximation Theory 184 209

    [13]

    Jeffrey D B, Michael C, David H, Yirong J 2013 IEEE Trans. Signal Processing 62 1694

    [14]

    Xie Z P, Chen S C 2013 Journal of Computer Research and Development 49 580 (in Chinese) [谢志鹏, 陈松灿 2013 计算机研究与发展 49 580]

    [15]

    Feichtinger H G 1981 Monatshefte fr Mathematik 92 269

    [16]

    Mishali M, Eldar Y C 2009 Information Theory Workshop 2009.IEEE

    [17]

    Daubenchies I 1992 Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics) p97

    [18]

    Unser M, Blu T 2005 IEEE Trans. Signal Processing 53 1425

    [19]

    Qu C W, He Y, Liu W H, Li N 2009 Frames Theory and Applications (Beijing: National Defense Industy Press) p152 (in Chinese) [曲长文, 何友, 刘卫华, 李楠 2009 框架理论及应用(北京: 国防工业出版社) 第152页]

    [20]

    Tropp J A, Laska J N, Duarte M F, Romberg J K, Baraniuk R G 2010 IEEE Trans Inf. Theory 56 520

    [21]

    Xu Z Q 2012 Scientia Sinica (Mathematica) 42 865 (in Chinese) [许志强 中国科学:数学 42 865]

    [22]

    Haupt J, Nowak R 2010 Proc. 44th Annual Conf. on Information Sciences and Systems Princeton, NJ, March 2010

    [23]

    Xu G W, Xu Z Q 2013 arXiv:1301.0373

    [24]

    Rudelson M, Vershynin R 2008 Communications on Pure and Applied Mathematics 61 1025

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2140
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-19
  • 修回日期:  2014-10-26
  • 刊出日期:  2015-04-05

基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构

  • 1. 军械工程学院, 导弹工程系, 石家庄 050003;
  • 2. 国家纳米科学中心, 北京 100190
    基金项目: 

    国家自然科学基金(批准号: 61372039)资助的课题.

摘要: 基于Gabor框架的窄脉冲信号采样及重构效果已经得到验证, 其解决了有限新息率(finite rate of innovation, FRI)采样方法无法在波形未知的情况下重构出脉冲波形的问题.但是目前的Gabor框架采样系统的窗函数构造复杂且难以物理实现.本文将指数再生窗函数引入Gabor框架, 将窗函数序列调制部分简化为一阶巴特沃斯模拟滤波器, 构造了Gabor系数重构所需要的压缩感知(compressed sensing, CS)测量矩阵.为了使得测量矩阵满足信号精确重构所需的约束等距特性(restricted isometry property, RIP), 根据高阶指数样条函数能量聚集特性, 选择了最优的窗函数支撑宽度, 推导了信号重构所需的约束条件, 还对其鲁棒性进行了分析.本文通过仿真实验对上述分析进行了有效验证, 该系统可应用于测试仪器、状态监测、雷达及通信领域等多种背景下的窄脉冲信号采样与重构.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回