搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移

李牧野 李芳 魏来 何志聪 张俊佩 韩俊波 陆培祥

CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移

李牧野, 李芳, 魏来, 何志聪, 张俊佩, 韩俊波, 陆培祥
PDF
导出引用
  • 采用时间分辨荧光光谱技术研究了在双光子激发下不同尺寸的量子点与罗丹明B 之间的荧光共振能量转移. 研究结果表明, 在800 nm的双光子激发条件下, 体系间能量转移效率随着供体吸收光谱与受体荧光光谱的光谱重叠程度增加而增加; 理论分析表明, 供体和受体间的Förster半径增加是导致其双光子能量转移效率增大的物理原因. 同时, 研究了罗丹明B浓度对荧光共振能量转移效率的影响. 研究结果表明, 量子点的荧光寿命随着罗丹明B浓度的增加而减小; 量子点与罗丹明B之间的荧光共振能量转移效率随着罗丹明B浓度的增加而增加; 当罗丹明B浓度为3.0×10-5 mol·L-1时, 双光子荧光共振能量转移效率为40.1%.
    • 基金项目: 国家自然科学基金(批准号: 11204222)、湖北省自然科学基金(批准号: 2013CFB316, 2014CFB793)资助的课题.
    [1]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013

    [2]

    Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]

    [3]

    Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 物理学报 62 454]

    [4]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 物理学报 55 4139]

    [5]

    Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207

    [6]

    Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102

    [7]

    Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360

    [8]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298

    [9]

    Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263

    [10]

    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449

    [11]

    He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 物理学报 63 177301]

    [12]

    Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505

    [13]

    Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811

    [14]

    Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909

    [15]

    Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304

    [16]

    Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224

    [17]

    Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38

    [18]

    Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392

    [19]

    He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]

    [20]

    Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177

    [21]

    Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308

    [22]

    Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481

    [23]

    Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737

  • [1]

    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos A P 1998 Science 281 2013

    [2]

    Xu W B, Wang Y X, Xu R H, Xu F H, Zhang G X, Liang S, Yin D Z 2007 J. Funct. Mater. 38 1287 (in Chinese) [徐万帮, 汪勇先, 许荣辉, 许凤华, 张国欣, 梁胜, 尹端芷 2007 功能材料 38 1287]

    [3]

    Liu H M, Yang C H, Liu X, Zhang J Q, Shi Y L 2013 Acta Phys. Sin. 62 454 (in Chinese) [刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙 2013 物理学报 62 454]

    [4]

    Cheng C, Zhang H 2006 Acta Phys. Sin. 55 4139 (in Chinese) [程成, 张航 2006 物理学报 55 4139]

    [5]

    Qiu L, Zhang K, Li Z Y 2013 Chin. Phys. B 22 094207

    [6]

    Jiang T T, Shao W J, Yin N Q, Liu L, Song Jiang L Q, Zhu L X, Xu X L 2014 Chin. Phys. B 23 086102

    [7]

    Gao M Y, Kirstein S, Mohwald H, Rogach A L, Kornowski A, Eychmuller A, Weller H 1998 J. Phys. Chem. B 102 8360

    [8]

    Maestro L M, Ramirez-Hernandez J E, Bogdan N, Capobianco J A, Vetrone F, Sole J G, Jaque D 2012 Nanoscale 4 298

    [9]

    Li F, He Z C, Li M Y, Zhang J P, Han J B, Lu P X 2014 Mater. Lett. 132 263

    [10]

    Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Springer) pp445-449

    [11]

    He Y T, Xu Z, Zhao S L, Liu Z M, Gao S, Xu X R 2014 Acta Phys. Sin. 63 177301 (in Chinese) [何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢 2014 物理学报 63 177301]

    [12]

    Wu S H, Li W L, Chen Z, Li S B, Wang X H, Wei X B 2015 Chin. Phys. B 24 028505

    [13]

    Li J, Mei F, Li W Y, He X W, Zhang Y K 2008 Spectrochim. Acta Part A 70 811

    [14]

    Liu Y L, L X, Zhao Y, Chen M L, Liu J, Wang P, Guo W 2012 Dyes. Pigm. 92 909

    [15]

    Ge S G, Lu J J, Yan M, Yu F, Yu J H, Sun X J 2011 Dyes. Pigm. 91 304

    [16]

    Tao H L, Li S H, Li J P 2012 Chin. J. Anal. Chem. 40 224

    [17]

    Bhuvaneswari J, Fathima A K, Rajagopal S 2012 J. Photochem. Photobiol. A 227 38

    [18]

    Aye-Han N N, Ni Q, Zhang J 2009 Curr. Opin. Chem. Biol. 13 392

    [19]

    He L F, Tang H X, Wang K M, Tan W H, Liu B, Meng X X, Li J, Wang W 2006 Acta Chim. Sin. 64 1116 (in Chinese) [何丽芳, 唐红星, 王柯敏, 谭蔚泓, 刘斌, 孟祥贤, 李军, 王炜 2006 化学学报 64 1116]

    [20]

    Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmuller A, Weller H 2002 J. Phys. Chem. B 106 7177

    [21]

    Pu S C, Yang M J, Hsu C C, Lai C W, Hsieh C C, Lin S H, Cheng Y M, Chou P T 2006 Small 2 1308

    [22]

    Xu C, Webb Watt W 1996 J. Opt. Soc. Am. B 13 481

    [23]

    Magde D, Rojas G E, Seybold P G 1999 Photochem. Photobiol. 70 737

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2299
  • PDF下载量:  931
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-28
  • 修回日期:  2014-12-28
  • 刊出日期:  2015-05-05

CdTe量子点与罗丹明B水溶液体系下的双光子激发荧光共振能量转移

  • 1. 武汉工程大学理学院, 光学信息技术实验室, 武汉 430073;
  • 2. 华中科技大学物理学院, 武汉 430074;
  • 3. 华中科技大学, 国家脉冲强磁场科学中心, 武汉 430074
    基金项目: 

    国家自然科学基金(批准号: 11204222)、湖北省自然科学基金(批准号: 2013CFB316, 2014CFB793)资助的课题.

摘要: 采用时间分辨荧光光谱技术研究了在双光子激发下不同尺寸的量子点与罗丹明B 之间的荧光共振能量转移. 研究结果表明, 在800 nm的双光子激发条件下, 体系间能量转移效率随着供体吸收光谱与受体荧光光谱的光谱重叠程度增加而增加; 理论分析表明, 供体和受体间的Förster半径增加是导致其双光子能量转移效率增大的物理原因. 同时, 研究了罗丹明B浓度对荧光共振能量转移效率的影响. 研究结果表明, 量子点的荧光寿命随着罗丹明B浓度的增加而减小; 量子点与罗丹明B之间的荧光共振能量转移效率随着罗丹明B浓度的增加而增加; 当罗丹明B浓度为3.0×10-5 mol·L-1时, 双光子荧光共振能量转移效率为40.1%.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回