搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花簇分形无标度网络中节点影响力的区分度

舒盼盼 王伟 唐明 尚明生

花簇分形无标度网络中节点影响力的区分度

舒盼盼, 王伟, 唐明, 尚明生
PDF
导出引用
导出核心图
  • 大量研究表明分形尺度特性广泛存在于真实复杂系统中, 且分形结构显著影响网络上的传播动力学行为. 虽然复杂网络的节点传播影响力吸引了越来越多学者的关注, 但依旧缺乏针对分形网络结构的节点影响力的系统研究. 鉴于此, 本文基于花簇分形网络模型, 研究了分形无标度结构上的节点传播影响力. 首先, 对比了不同分形维数下的节点影响力, 结果表明, 当分形维数很小时, 节点影响力的区分度几乎不随节点度变化, 很难区分不同节点的传播影响力, 而随着分形维数的增大, 从全局和局域角度都能很容易识别网络中的超级传播源. 其次, 通过对原分形网络进行不同程度的随机重连来分析网络噪声对节点影响力区分度的影响, 发现在低维分形网络上, 加入网络噪声之后能够容易区分不同节点的影响力, 而在无穷维超分形网络中, 加入网络噪声之后能够区分中间度节点的影响力, 但从全局和局域角度都很难识别中心节点的影响力. 所得结论进一步补充、深化了基于花簇分形网络的节点影响力研究, 研究结果对实际病毒传播的预警控制提供了一定的理论借鉴.
    • 基金项目: 国家自然科学基金(批准号: 11105025, 11575041)和电子科技大学优秀博士生学术支持计划(批准号: YXBSZC20131033)资助的课题.
    [1]

    Song C, Havlin S, Makse H A 2005 Nature 433 392

    [2]

    Song C, Havlin S, Makse H A 2006 Nat. Phys. 2 275

    [3]

    Song C, Gallos L K, Havlin S, Makse H A 2007 J. Stat. Mech. P03006

    [4]

    Kim J S, Goh K I, Kahng B, Kim D 2007 Chaos 17 026116

    [5]

    Kitsak M, Havlin S, Paul G, Riccaboni M, Pammolli F, Stanley H E 2007 Phys. Rev. E 75 056115

    [6]

    Zhang Z Z, Zhou S G, Zou T 2007 Eur. Phys. J. B 56 259

    [7]

    Hinczewski M 2007 Phys. Rev. E 75 061104

    [8]

    Zhang Z Z, Xie W L, Zhou S G, Gao S Y, Guan J H 2009 Europhys. Lett. 88 10001

    [9]

    Zhang Z Z, Zhou S G, Zou T, Chen G S 2008 J. Stat. Mech. P09008

    [10]

    Rozenfeld H D, Havlin S, ben-Avraham D 2007 New J. Phys. 9 175

    [11]

    Lee H K, Shim P S, Noh J D 2013 Phys. Rev. E 87 062812

    [12]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [13]

    Gong K, Tang M, Hui P M, Zhang H F, Do Y, Lai Y C 2013 PLos ONE 8 e83489

    [14]

    Li R Q, Tang M, Hui B M 2013 Acta Phys. Sin. 62 168903 (in Chinese) [李睿琪, 唐明, 许伯铭 2013 物理学报 62 168903]

    [15]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [16]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [17]

    Chung N N, Chew L Y, Zhou J, Lai C H 2012 Europhys. Lett. 98 58004

    [18]

    Chen D B, L L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [19]

    Bauer F, Lizier J T 2012 Europhys. Lett. 99 68007

    [20]

    Costa L da F, Rodrigues F A, Travieso G, Boas P R V 2007 Adv. Phys. 56 167

    [21]

    Pu J, Chen X W, Wei D J, Liu Q, Deng Y 2014 Europhys. Lett. 107 10010

    [22]

    Anderson R M, May R M 1992 Infectious Disease of Humans (Oxford: Oxford University Press) pp1-768

    [23]

    Castellano C, Pastor-Satorras R 2006 Phys. Rev. Lett. 96 038701

    [24]

    Shu P P, Tang M, Gong K, Liu Y 2012 Chaos 22 043124

    [25]

    Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A 2004 Phys. Rev. Lett. 92 178701

    [26]

    Yang H, Tang M, Zhang H F 2012 New J. Phys. 14 123017

    [27]

    Wang W, Tang M, Zhang H F, Gao H, Do Y, Liu Z H 2014 Phys. Rev. E 90 042803

    [28]

    L L Y, Zhang Y C, Yeung C H, Zhou T 2011 PLoS ONE 6 e21202

    [29]

    Guimerá R, Sales-Pardo M 2009 Proc. Natl. Acad. Sci. USA 106 22073

    [30]

    Legrain P, Wojcik J, Gauthier J M 2001 Trends in Genetics 17 346

    [31]

    Marsden P V 1990 Annual Review of Sociology 16 435

    [32]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

  • [1]

    Song C, Havlin S, Makse H A 2005 Nature 433 392

    [2]

    Song C, Havlin S, Makse H A 2006 Nat. Phys. 2 275

    [3]

    Song C, Gallos L K, Havlin S, Makse H A 2007 J. Stat. Mech. P03006

    [4]

    Kim J S, Goh K I, Kahng B, Kim D 2007 Chaos 17 026116

    [5]

    Kitsak M, Havlin S, Paul G, Riccaboni M, Pammolli F, Stanley H E 2007 Phys. Rev. E 75 056115

    [6]

    Zhang Z Z, Zhou S G, Zou T 2007 Eur. Phys. J. B 56 259

    [7]

    Hinczewski M 2007 Phys. Rev. E 75 061104

    [8]

    Zhang Z Z, Xie W L, Zhou S G, Gao S Y, Guan J H 2009 Europhys. Lett. 88 10001

    [9]

    Zhang Z Z, Zhou S G, Zou T, Chen G S 2008 J. Stat. Mech. P09008

    [10]

    Rozenfeld H D, Havlin S, ben-Avraham D 2007 New J. Phys. 9 175

    [11]

    Lee H K, Shim P S, Noh J D 2013 Phys. Rev. E 87 062812

    [12]

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901 (in Chinese) [刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901]

    [13]

    Gong K, Tang M, Hui P M, Zhang H F, Do Y, Lai Y C 2013 PLos ONE 8 e83489

    [14]

    Li R Q, Tang M, Hui B M 2013 Acta Phys. Sin. 62 168903 (in Chinese) [李睿琪, 唐明, 许伯铭 2013 物理学报 62 168903]

    [15]

    Pastor-Satorras R, Vespignani A 2002 Phys. Rev. E 65 036104

    [16]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [17]

    Chung N N, Chew L Y, Zhou J, Lai C H 2012 Europhys. Lett. 98 58004

    [18]

    Chen D B, L L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [19]

    Bauer F, Lizier J T 2012 Europhys. Lett. 99 68007

    [20]

    Costa L da F, Rodrigues F A, Travieso G, Boas P R V 2007 Adv. Phys. 56 167

    [21]

    Pu J, Chen X W, Wei D J, Liu Q, Deng Y 2014 Europhys. Lett. 107 10010

    [22]

    Anderson R M, May R M 1992 Infectious Disease of Humans (Oxford: Oxford University Press) pp1-768

    [23]

    Castellano C, Pastor-Satorras R 2006 Phys. Rev. Lett. 96 038701

    [24]

    Shu P P, Tang M, Gong K, Liu Y 2012 Chaos 22 043124

    [25]

    Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A 2004 Phys. Rev. Lett. 92 178701

    [26]

    Yang H, Tang M, Zhang H F 2012 New J. Phys. 14 123017

    [27]

    Wang W, Tang M, Zhang H F, Gao H, Do Y, Liu Z H 2014 Phys. Rev. E 90 042803

    [28]

    L L Y, Zhang Y C, Yeung C H, Zhou T 2011 PLoS ONE 6 e21202

    [29]

    Guimerá R, Sales-Pardo M 2009 Proc. Natl. Acad. Sci. USA 106 22073

    [30]

    Legrain P, Wojcik J, Gauthier J M 2001 Trends in Genetics 17 346

    [31]

    Marsden P V 1990 Annual Review of Sociology 16 435

    [32]

    Newman M E J 2002 Phys. Rev. Lett. 89 208701

  • [1] 赵佳, 喻莉, 李静茹. 社交网络中基于贝叶斯和半环代数模型的节点影响力计算机理. 物理学报, 2013, 62(13): 130201. doi: 10.7498/aps.62.130201
    [2] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析. 物理学报, 2014, 63(21): 218902. doi: 10.7498/aps.63.218902
    [3] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能. 物理学报, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [4] 王 俊, 董宝中, 徐 耀, 李志宏, 范文浩, 吴 东, 孙予罕. 小角x射线散射法研究甲基改性氧化硅凝胶的双分形结构. 物理学报, 2003, 52(2): 442-447. doi: 10.7498/aps.52.442
    [5] 黄 磊, 孙建安, 豆福全, 段文山, 刘兴霞. (3+1)维非线性Burgers系统的新的分离变量解及其局域激发结构与分形结构. 物理学报, 2007, 56(2): 611-619. doi: 10.7498/aps.56.611
    [6] 朱加民, 马正义, 郑春龙. (2+1)维Broer-Kaup方程的局域分形结构. 物理学报, 2004, 53(10): 3248-3251. doi: 10.7498/aps.53.3248
    [7] 胡兆龙, 刘建国, 任卓明. 基于节点度信息的自愿免疫模型研究. 物理学报, 2013, 62(21): 218901. doi: 10.7498/aps.62.218901
    [8] 李鑫, 赵城利, 刘阳洋. 有限步传播范围期望指标判别节点传播影响力. 物理学报, 2020, 69(2): 028901. doi: 10.7498/aps.69.20191313
    [9] 苑卫国, 刘云, 程军军, 熊菲. 微博双向关注网络节点中心性及传播 影响力的分析. 物理学报, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [10] 闵磊, 刘智, 唐向阳, 陈矛, 刘三(女牙). 基于扩展度的复杂网络传播影响力评估算法. 物理学报, 2015, 64(8): 088901. doi: 10.7498/aps.64.088901
    [11] 阮逸润, 老松杨, 王竣德, 白亮, 侯绿林. 一种改进的基于信息传播率的复杂网络影响力评估算法. 物理学报, 2017, 66(20): 208901. doi: 10.7498/aps.66.208901
    [12] 杨慧, 唐明, 蔡世民, 周涛. 异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作用. 物理学报, 2016, 65(5): 058901. doi: 10.7498/aps.65.058901
    [13] 苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点. 物理学报, 2015, 64(2): 020101. doi: 10.7498/aps.64.020101
    [14] 胡庆成, 尹龑燊, 马鹏斐, 高旸, 张勇, 邢春晓. 一种新的网络传播中最有影响力的节点发现方法 . 物理学报, 2013, 62(14): 140101. doi: 10.7498/aps.62.140101
    [15] 肖云鹏, 李松阳, 刘宴兵. 一种基于社交影响力和平均场理论的信息传播动力学模型. 物理学报, 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [16] 杨小帆, 钟 将, 温罗生. 在二部无标度网上的两性疾病传播. 物理学报, 2008, 57(8): 4794-4799. doi: 10.7498/aps.57.4794
    [17] 钱昌吉, 高国良, 李洪, 叶高翔. 无序杂质区域对沉积在胶体基底表面的金原子凝聚体分形结构的影响. 物理学报, 2002, 51(9): 1960-1964. doi: 10.7498/aps.51.1960
    [18] 任卓明. 动态复杂网络中节点影响力的研究进展. 物理学报, 2020, 69(4): 048901. doi: 10.7498/aps.69.20190830
    [19] 胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢. 一种新的复杂网络影响力最大化发现方法. 物理学报, 2015, 64(19): 190101. doi: 10.7498/aps.64.190101
    [20] 康玲, 项冰冰, 翟素兰, 鲍中奎, 张海峰. 基于区域密度曲线识别网络上的多影响力节点. 物理学报, 2018, 67(19): 198901. doi: 10.7498/aps.67.20181000
  • 引用本文:
    Citation:
计量
  • 文章访问数:  482
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2015-06-28
  • 刊出日期:  2015-10-20

花簇分形无标度网络中节点影响力的区分度

  • 1. 电子科技大学, 互联网科学中心, 成都 610054
    基金项目: 

    国家自然科学基金(批准号: 11105025, 11575041)和电子科技大学优秀博士生学术支持计划(批准号: YXBSZC20131033)资助的课题.

摘要: 大量研究表明分形尺度特性广泛存在于真实复杂系统中, 且分形结构显著影响网络上的传播动力学行为. 虽然复杂网络的节点传播影响力吸引了越来越多学者的关注, 但依旧缺乏针对分形网络结构的节点影响力的系统研究. 鉴于此, 本文基于花簇分形网络模型, 研究了分形无标度结构上的节点传播影响力. 首先, 对比了不同分形维数下的节点影响力, 结果表明, 当分形维数很小时, 节点影响力的区分度几乎不随节点度变化, 很难区分不同节点的传播影响力, 而随着分形维数的增大, 从全局和局域角度都能很容易识别网络中的超级传播源. 其次, 通过对原分形网络进行不同程度的随机重连来分析网络噪声对节点影响力区分度的影响, 发现在低维分形网络上, 加入网络噪声之后能够容易区分不同节点的影响力, 而在无穷维超分形网络中, 加入网络噪声之后能够区分中间度节点的影响力, 但从全局和局域角度都很难识别中心节点的影响力. 所得结论进一步补充、深化了基于花簇分形网络的节点影响力研究, 研究结果对实际病毒传播的预警控制提供了一定的理论借鉴.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回