搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ku波段编码式电控超薄周期单元设计与验证

杨欢欢 杨帆 许慎恒 李懋坤 曹祥玉 高军

Ku波段编码式电控超薄周期单元设计与验证

杨欢欢, 杨帆, 许慎恒, 李懋坤, 曹祥玉, 高军
PDF
导出引用
  • 编码式电控周期单元通过加载电子控制器件使周期结构具有编码式的电可调特点. 本文利用PIN二极管, 设计实现了一种工作在Ku波段的超薄平面电控单元结构. 当外加电压控制二极管导通或截止时, 该结构的反射相位呈现出180°的相位差, 并且具有较低的反射损耗. 因此, 当对周期排列的单元外加不同的电压时, 可等效为用不同组合的“1”, “0”对结构进行编码, 从而可以获得不同的电磁功能. 为验证单元的编码特性, 从“场”与“路”两个角度考虑, 设计了实际的偏置电路, 制作了单元样品, 并基于波导法测试了其性能. 实验结果表明: 在加载不同的控制电压时, 制作的单元结构实现了设计的低损耗和相位差; 实验与仿真符合良好. 提出的周期单元形式简单, 厚度超薄, 其电控编码式特性在主动式隐身表面或波束捷变天线设计等许多方面都有潜在应用.
      通信作者: 杨欢欢, jianye8901@126.com
    • 基金项目: 清华信息科学与技术国家实验室和国家自然科学基金(批准号: 61271100, 61371013, 61471389) 资助的课题.
    [1]

    Cui T J, Liu R P, Smith D R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer US) p2

    [2]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [3]

    Xiong H, Hong J S, Jin D L, Zhang Z M 2012 Chin. Phys. B 21 094101

    [4]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [5]

    Goussetis G, Feresidis A P, Vardaxoglou J C 2006 IEEE T. Anntenn. Propag. 54 82

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE T. Antenn. Propag. 55 3630

    [7]

    Dang K Z, Shi J M, Li Z G, Meng X H, Wang Q C 2015 Acta Phys. Sin. 64 114101 (in Chinese) [党可征, 时家明, 李志刚, 孟祥豪, 王启超 2015 物理学报 64 114101]

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702

    [10]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 21 094101

    [11]

    Sievenpiper D, Zhang L J, Broas R F, Alexopolous N G, Yablonovitch E 1999 IEEE T. Microw. Theory. 47 2059

    [12]

    Shi Y Y, Tang W C, Liu S, Wang C, Zhuang W 2015 IEEE T. Electromagn. C 57 532

    [13]

    Su Z J, Dang X J, Li L, Liang C H 2015 Electron. Lett. 51 501

    [14]

    Sivasamy R, Kanagasabai M 2015 IEEE Microw. Wirel. Co. 25 298

    [15]

    Yu Y M, Chiu C N, Chiou Y P, Wu T L 2015 IEEE T. Antenn. Propag. 63 1641

    [16]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302 (in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [17]

    Zhu X C, Hong W, Wu K, Tang H J, Hao Z C, Chen J X, Yang Q G 2013 IEEE Antenn. Wirel. Pr. 12 968

    [18]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE T. Antenn. Propag. 63 3522

    [19]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [20]

    Giovampaola C D, Engheta N 2014 Nat. Mater. 13 1115

    [21]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [22]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE T. Antenn. Propag. 61 2327

    [23]

    Hannan P, Balfour M 1965 IEEE T. Antenn. Propag. 13 342

  • [1]

    Cui T J, Liu R P, Smith D R 2010 Metamaterials: Theory, Design, and Applications (New York: Springer US) p2

    [2]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366

    [3]

    Xiong H, Hong J S, Jin D L, Zhang Z M 2012 Chin. Phys. B 21 094101

    [4]

    Xu H X, Wang G M, Wang J F, Yang Z M 2012 Chin. Phys. B 21 124101

    [5]

    Goussetis G, Feresidis A P, Vardaxoglou J C 2006 IEEE T. Anntenn. Propag. 54 82

    [6]

    Paquay M, Iriarte J C, Ederra I, Gonzalo R, Maagt P D 2007 IEEE T. Antenn. Propag. 55 3630

    [7]

    Dang K Z, Shi J M, Li Z G, Meng X H, Wang Q C 2015 Acta Phys. Sin. 64 114101 (in Chinese) [党可征, 时家明, 李志刚, 孟祥豪, 王启超 2015 物理学报 64 114101]

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Li L, Yang Y, Liang C H 2011 J. Appl. Phys. 110 063702

    [10]

    Li L Y, Wang J, Du H L, Wang J F, Qu S B 2015 Chin. Phys. B 21 094101

    [11]

    Sievenpiper D, Zhang L J, Broas R F, Alexopolous N G, Yablonovitch E 1999 IEEE T. Microw. Theory. 47 2059

    [12]

    Shi Y Y, Tang W C, Liu S, Wang C, Zhuang W 2015 IEEE T. Electromagn. C 57 532

    [13]

    Su Z J, Dang X J, Li L, Liang C H 2015 Electron. Lett. 51 501

    [14]

    Sivasamy R, Kanagasabai M 2015 IEEE Microw. Wirel. Co. 25 298

    [15]

    Yu Y M, Chiu C N, Chiou Y P, Wu T L 2015 IEEE T. Antenn. Propag. 63 1641

    [16]

    Zhang J, Gao J S, Xu N X, Yu M 2015 Acta Phys. Sin. 64 067302 (in Chinese) [张建, 高劲松, 徐念喜, 于淼 2015 物理学报 64 067302]

    [17]

    Zhu X C, Hong W, Wu K, Tang H J, Hao Z C, Chen J X, Yang Q G 2013 IEEE Antenn. Wirel. Pr. 12 968

    [18]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE T. Antenn. Propag. 63 3522

    [19]

    Fan Y, Qu S B, Wang J F, Zhang J Q, Feng M D, Zhang A X 2015 Acta Phys. Sin. 64 184101 (in Chinese) [范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学 2015 物理学报 64 184101]

    [20]

    Giovampaola C D, Engheta N 2014 Nat. Mater. 13 1115

    [21]

    Cui T J, Qi M Q, Wang X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218

    [22]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE T. Antenn. Propag. 61 2327

    [23]

    Hannan P, Balfour M 1965 IEEE T. Antenn. Propag. 13 342

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1911
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-13
  • 修回日期:  2015-11-15
  • 刊出日期:  2016-03-05

Ku波段编码式电控超薄周期单元设计与验证

  • 1. 清华大学电子工程系, 北京 100084;
  • 2. 空军工程大学信息与导航学院, 西安 710077
  • 通信作者: 杨欢欢, jianye8901@126.com
    基金项目: 

    清华信息科学与技术国家实验室和国家自然科学基金(批准号: 61271100, 61371013, 61471389) 资助的课题.

摘要: 编码式电控周期单元通过加载电子控制器件使周期结构具有编码式的电可调特点. 本文利用PIN二极管, 设计实现了一种工作在Ku波段的超薄平面电控单元结构. 当外加电压控制二极管导通或截止时, 该结构的反射相位呈现出180°的相位差, 并且具有较低的反射损耗. 因此, 当对周期排列的单元外加不同的电压时, 可等效为用不同组合的“1”, “0”对结构进行编码, 从而可以获得不同的电磁功能. 为验证单元的编码特性, 从“场”与“路”两个角度考虑, 设计了实际的偏置电路, 制作了单元样品, 并基于波导法测试了其性能. 实验结果表明: 在加载不同的控制电压时, 制作的单元结构实现了设计的低损耗和相位差; 实验与仿真符合良好. 提出的周期单元形式简单, 厚度超薄, 其电控编码式特性在主动式隐身表面或波束捷变天线设计等许多方面都有潜在应用.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回