搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压熔渗生长法制备金刚石聚晶中碳的转化机制研究

胡强 贾晓鹏 李尚升 宿太超 胡美华 房超 张跃文 李刚 刘海强 马红安

引用本文:
Citation:

高压熔渗生长法制备金刚石聚晶中碳的转化机制研究

胡强, 贾晓鹏, 李尚升, 宿太超, 胡美华, 房超, 张跃文, 李刚, 刘海强, 马红安

Research on mechanism of carbon transformation in the preparation of polycrystalline diamond by melt infiltration and growth method under high pressures

Hu Qiang, Jia Xiao-Peng, Li Shang-Sheng, Su Tai-Chao, Hu Mei-Hua, Fang Chao, Zhang Yue-Wen, Li Gang, Liu Hai-Qiang, Ma Hong-An
PDF
导出引用
  • 在6 GPa和1500 ℃的压力和温度范围内, 利用高压熔渗生长法制备了纯金刚石聚晶, 深入研究了高温高压下金刚石聚晶生长过程中碳的转化机制. 利用光学显微镜、X-射线衍射、场发射扫描电子显微镜检测, 发现在熔渗过程中金刚石层出现了石墨化现象, 在烧结过程中金刚石颗粒表面形貌发生了变化. 根据实验现象分析, 在制备过程中存在三种碳的转化机制: 1)金属熔渗阶段金刚石颗粒表面石墨化产生石墨; 2)产生的石墨在烧结阶段很快转变为填充空隙的金刚石碳; 3)金刚石直接溶解在金属溶液中, 以金刚石形式在颗粒间析出, 填充空隙. 本文研究碳的转化机制为在高温高压金属溶剂法合成金刚石的条件下(6 GPa和1500 ℃的压力和温度范围内)工业批量化制备无添加剂、无空隙的纯金刚石聚晶提供了重要的理论指导.
    Recently, a variety of carbon materials can be turned into pure polycrystalline diamond directly without any additives under extreme high pressures and high temperatures (pressure above 13 GPa and temperature above 2000 ℃). Polycrystalline diamond shows a broad application prospect because of its superior performance. However, it is difficult to realize the industrialization of pure polycrystalline diamond on current high pressure equipment due to the high synthetic conditions. The focus of our work is that the synthesis of pure polycrystalline diamond can be realized in the same synthesis range of single diamond produced from the solvent metal (pressure below 6 GPa and temperature below 1500 ℃). The carbon materials can precipitate from the solution in a form of diamond, and fill into the gaps between the diamond particles. According to some domestic scholars' researches on polycrystalline diamond, the solvent method can reduce the high temperature and high pressure conditions on which carbon may transform into diamond directly, and precipitate from the solution in the form of diamond into the gaps between diamond particles. Through a deep study of the approach, the low addition content, even pure polycrystalline diamond without gaps can be prepared. In this paper we have prepared pure polycrystalline diamonds under relatively lower conditions (the pressure being below 6 GPa and the temperature below 1500 ℃) by the method that the metal solution layer infiltrates into the gaps between the pure diamond particles and then the diamond particles will grow up. We also carry out a research on the mechanism of carbon transformation in the preparation of polycrystalline diamond. Compared with the traditional method of powder mixing technology, the melt infiltration and growth method is more advantageous to prepare high abrasive resistance and high density pure polycrystalline diamond.In order to prepare pure flawless polycrystalline diamonds without additives by China-type large volume cubic high-pressure apparatus (CHPA) (SPD-61200), we study thoroughly on the melt infiltration and growth method under high pressures; and this provides a theoretical guidance for pure polycrystalline diamond synthesis. In this paper, polycrystalline diamond is prepared by melt infiltration and growth method at pressures below 6 GPa and temperatures below 1500 ℃. Mechanism research of carbon transformation is made under high pressure and high temperature (HPHT). Through the analyses of optical microscope, X-ray diffraction, and field emission scanning electron microscope measurements, graphitization occurs on the surface of diamond in the procedure of metal solution infiltrating, and then the generated graphite quickly change into diamond-like carbon under HPHT. Meanwhile, the morphology of diamond particles changes distinctly in the syntheses process. From the analysis of experimental phenomena, carbon may undergo three transformations in the preparation: 1) graphite is generated due to the graphitization on the surface of diamond particles, which is caused by the metal solution infiltrating; 2) the generated graphite quickly fills into the gap with the form of diamond-like carbon during the sintering stage; 3) the diamond-like carbon is dissolved in a metal solution, and then precipitates between particles in the form of diamond. The mechanism research on carbon source transformation plays an important guiding role in the industrialization of no-additive, no-gap pure polycrystalline diamond preparation.
      通信作者: 马红安, maha@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51172089)资助的课题.
      Corresponding author: Ma Hong-An, maha@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51172089).
    [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [3]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250

    [4]

    Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439

    [5]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [6]

    Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622

    [7]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [8]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [9]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [10]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta. Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

    [11]

    Fang L g, Qin G P, Kong C Y, Ruan H B, Huang G J, Cui Y T 2010 Chin. Phys. B 19 117501

    [12]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

    [13]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [14]

    Irifune T, Kurio A, Sakamoto S, Inour T, Sumiya H, Funakoshi K 2004 Phys. Ear. Plan. Inter. 143-144 593

    [15]

    Xu C, He D w, Wang H K, Wang W D, Tang M J, Wang P 2014 Chin. Sci. Bull. 59 5251

    [16]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Regract. Met. H. 36 232

    [17]

    Sumiya H, Irifune T 2004 Diam. Relat. Mater. 14 1771

    [18]

    Dubrobinskata N, Dubrovinsky L, Langenhorst F, Jacobsen S, Liebske C 2005 Diam. Relat. Mater. 14 16

    [19]

    Yusa H 2002 Diam. Relat. Mater. 11 87

    [20]

    Sumiya H, Harano K 2012 Diam. Relat. Mater. 24 44

    [21]

    Harano K, Saton T, Sumiya H, Kukino S 2012 Diam. Relat. Mater. 24 78

    [22]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [23]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [24]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [25]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [26]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [27]

    Deng F M, Wang Q, Lu S D, Zhao D, Zhao X K 2013 Superhard Mater. Eng. 25 49

    [28]

    Hong S M, Luo X J, Chen S X, Jiang R Z, Gou Q Q 1990 Chin. J. High Pressure Phys. 4 105

    [29]

    Hong S M 2005 Superhard Mate. Eng. 1 1

    [30]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G, Philip B J 2002 Phys.: Condens. Matter. 14 11269

    [31]

    Shao H L, Wang H K, Xu S K, Chen Y J, LI Y, Peng J, Zou W J 2015 Mater. Rev. 29 81

    [32]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

  • [1]

    Chrenko R M, Mcdonald R S, Darrow K A 1967 Nature 213 474

    [2]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [3]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250

    [4]

    Kunuku S, Sankaran K J, Tsai C Y, Chang W H, Tai N H, Leou K C, Lin I N 2013 Appl. Mater. Interfaces 5 7439

    [5]

    Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H, Ando T 1999 Appl. Phys. Lett. 75 3219

    [6]

    Zhang W J, Meng X M, Chan C Y, Wu Y, Bello I, Lee S T 2003 Appl. Phys. Lett. 82 2622

    [7]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Sci. China: Phys. Mech. Astron. 55 781

    [8]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101]

    [9]

    Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y, Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese) [房超, 贾晓鹏, 陈宁, 周振翔, 李亚东, 李勇, 马红安 2015 物理学报 64 128101]

    [10]

    Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D, Ma H A 2014 Acta. Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]

    [11]

    Fang L g, Qin G P, Kong C Y, Ruan H B, Huang G J, Cui Y T 2010 Chin. Phys. B 19 117501

    [12]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

    [13]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [14]

    Irifune T, Kurio A, Sakamoto S, Inour T, Sumiya H, Funakoshi K 2004 Phys. Ear. Plan. Inter. 143-144 593

    [15]

    Xu C, He D w, Wang H K, Wang W D, Tang M J, Wang P 2014 Chin. Sci. Bull. 59 5251

    [16]

    Xu C, He D W, Wang H K, Guan J W, Liu C M, Peng F, Wang W D, Kou Z L, He K, Yan X Z, Bi Y, Liu L, Li F J, Hui B 2013 Int. J. Regract. Met. H. 36 232

    [17]

    Sumiya H, Irifune T 2004 Diam. Relat. Mater. 14 1771

    [18]

    Dubrobinskata N, Dubrovinsky L, Langenhorst F, Jacobsen S, Liebske C 2005 Diam. Relat. Mater. 14 16

    [19]

    Yusa H 2002 Diam. Relat. Mater. 11 87

    [20]

    Sumiya H, Harano K 2012 Diam. Relat. Mater. 24 44

    [21]

    Harano K, Saton T, Sumiya H, Kukino S 2012 Diam. Relat. Mater. 24 78

    [22]

    Li Y, Jia X P, Feng Y G, Fang C, Fan L J, Li Y D, Zeng X, Ma H A 2015 Chin. Phys. B 24 088104

    [23]

    Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P, Ma H A 2015 Chin. Phys. B 24 038101

    [24]

    Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M, Ma H A 2013 Chin. Phys. B 22 014701

    [25]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F, Ma H A 2012 Chin. Phys. B 21 058101

    [26]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [27]

    Deng F M, Wang Q, Lu S D, Zhao D, Zhao X K 2013 Superhard Mater. Eng. 25 49

    [28]

    Hong S M, Luo X J, Chen S X, Jiang R Z, Gou Q Q 1990 Chin. J. High Pressure Phys. 4 105

    [29]

    Hong S M 2005 Superhard Mate. Eng. 1 1

    [30]

    Ma H A, Jia X P, Chen L X, Zhu P W, Guo W L, Guo X B, Wang Y D, Li S Q, Zou G T, Zhang G, Philip B J 2002 Phys.: Condens. Matter. 14 11269

    [31]

    Shao H L, Wang H K, Xu S K, Chen Y J, LI Y, Peng J, Zou W J 2015 Mater. Rev. 29 81

    [32]

    Strong H M, Hanneman R E 1967 J. Chem. Phys. 46 3668

  • [1] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [2] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [3] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [4] 宋青, 权伟龙, 冯田均, 俄燕. CH基团与金刚石(111)面的碰撞反应及其对碳膜生长的影响. 物理学报, 2016, 65(3): 030701. doi: 10.7498/aps.65.030701
    [5] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [6] 郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强. Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响. 物理学报, 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [7] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [8] 胡美华, 马红安, 颜丙敏, 张壮飞, 李勇, 周振翔, 秦杰明, 贾晓鹏. 高长径比柱状金刚石的高温高压合成与机理研究. 物理学报, 2012, 61(7): 078102. doi: 10.7498/aps.61.078102
    [9] 朱丽, 江美福, 宁兆元, 杜记龙, 王培君. 不同射频输入功率下制备的氟化类金刚石碳膜疏水性研究. 物理学报, 2009, 58(9): 6430-6435. doi: 10.7498/aps.58.6430
    [10] 胡建刚, 王震遐, 勇震中, 李勤涛, 朱志远. 40Ar+诱导无定形碳到金刚石纳米晶相变的研究. 物理学报, 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [11] 高 鹏, 徐 军, 邓新绿, 王德和, 董 闯. 微波ECR全方位离子注入制备类金刚石碳膜的结构及摩擦学性能研究. 物理学报, 2005, 54(7): 3241-3246. doi: 10.7498/aps.54.3241
    [12] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [13] 方志军, 夏义本, 王林军, 张伟丽, 马哲国, 张明龙. Al2O3陶瓷衬底碳离子预注入对金刚石薄膜应力的影响研究. 物理学报, 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
    [14] 张卫, 王季陶, 万永中. 人造金刚石低压气相生长的相图计算. 物理学报, 1997, 46(6): 1237-1242. doi: 10.7498/aps.46.1237
    [15] 张文军, 韩立, 胡博, 涨仿清, 陈光华. 织构金刚石薄膜的成核与生长. 物理学报, 1996, 45(1): 88-93. doi: 10.7498/aps.45.88
    [16] 王天民, 王维洁, 韩培刚, 黄良甫, 罗崇泰. 用高能H+束辐照类金刚石碳膜的研究. 物理学报, 1992, 41(2): 276-281. doi: 10.7498/aps.41.276
    [17] 高濂. 金刚石合成中的结构转化. 物理学报, 1982, 31(8): 1085-1089. doi: 10.7498/aps.31.1085
    [18] 胡静竹, 唐汝明, 徐济安. 金刚石压砧高压装置及I2和S高压相变的观察. 物理学报, 1980, 29(10): 1351-1354. doi: 10.7498/aps.29.1351
    [19] 程月英, 陈景章, 陈良辰. 超高压下生长多晶金刚石中触媒金属Ni的扩散及分布. 物理学报, 1980, 29(11): 1507-1512. doi: 10.7498/aps.29.1507
    [20] 沈主同, 王莉君, 杨奕娟, 聂建军, 刘宇明, 张军. 高压下多晶体金刚石的烧结机制——二元掺杂物和金刚石的相互作用. 物理学报, 1978, 27(3): 344-348. doi: 10.7498/aps.27.344
计量
  • 文章访问数:  4856
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-14
  • 修回日期:  2015-12-18
  • 刊出日期:  2016-03-05

/

返回文章
返回