搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hf-N体系的晶体结构预测和性质的第一性原理研究

樊涛 曾庆丰 于树印

Hf-N体系的晶体结构预测和性质的第一性原理研究

樊涛, 曾庆丰, 于树印
PDF
导出引用
  • 为了寻找具有优异力学性能的新型超高温陶瓷材料, 结合进化算法和第一性原理, 系统研究了Hf-N二元体系所有稳定存在的化合物及其晶体结构. 除了实验已知的岩盐结构的HfN之外, 本文还找到了Hf6N(R-3), Hf3N(P6322), Hf3N2(R-3m), Hf5N6(C2/m)和Hf3N4(C2/m)五种新结构, 基于准简谐近似原理计算了这些稳定结构的声子谱以验证其动力学稳定性, 常温甚至更高温度下的吉布斯自由能以验证其高温热力学稳定性. 结果表明, 这些结构是动力学稳定的, 且在1500 K以下都是热力学稳定的. 同时, 本文还列出了在搜索过程中出现的空间对称性较高、能量较低的亚稳态结构, 包括Hf2N(P42/mnm), Hf4N3(C2/m), Hf6N5(C2/m), Hf4N5(I4/m), Hf3N4(I-43d)和Hf3N4(Pnma). 之后计算了上述所有结构的力学性质(弹性常数、体模量、 剪切模量、 杨氏模量、硬度), 随着N 所占比例的增加, 硬度呈现的整体趋势是先增大后下降, 在Hf5N6处取得最大值, 为21 GPa. 其中Hf3N2和Hf4N5也展现出了较高的硬度, 都为19 GPa. 最后, 计算了这些结构的电子态密度和晶体轨道汉密尔顿分布, 从电子结构的角度分析了力学性能的成因. 研究结果显示, 较强的Hf-N共价键和较低的结构空位率是Hf5N6具有优异力学性能的主要原因.
      通信作者: 曾庆丰, qfzeng@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51372203, 51332004)和中央高校基本科研业务费专项资金(批准号: 3102015BJ(II) JGZ005)资助的课题.
    [1]

    Zhang L L, Fu Q G, Li H J {2015 Mater. Chin. 34 675 (in Chinese) [张磊磊, 付前刚, 李贺军 2015 中国材料进展 34 675]

    [2]

    Xie Y, Cheng L, Li L, Mei H, Zhang L 2013 J. Eur. Ceram. Soc. 33 1701

    [3]

    Li H, Zhang L, Cheng L, Wang Y, Yu Z, Huang M, Tu H, Xia H 2008 J. Mater. Sci. 43 2806

    [4]

    Huang S H, Liu J 2014 Chin. Phys. B 23 058105

    [5]

    Wang C L, Yu B H, Huo H L, Chen D, Sun H B 2009 Chin. Phys. B 18 1248

    [6]

    Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201 (in Chinese) [赵立凯, 赵二俊, 武志坚 2013 物理学报 62 046201]

    [7]

    Zhang G T, Bai T T, Yan H Y, Zhao Y R 2015 Chin. Phys. B 24 106104

    [8]

    Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H {2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 物理学报 64 236102]

    [9]

    Zhang M G, Yan H Y, Zhang G T, Wang H 2012 Chin. Phys. B 21 076103

    [10]

    Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C, Zhang F W 2014 Chin. Phys. B 23 026201

    [11]

    Li X F, Zhai H C, Fu H Z, Liu Z L, Ji G F 2011 Chin. Phys. B 20 093101

    [12]

    Zhao W J, Wang Y X 2009 Chin. Phys. B 18 3934

    [13]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese) [王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

    [14]

    Xun X C 2008 M.S. Dissertation (Changchun: Jilin University) (in Chinese) [荀显超 2008 硕士学位论文 (长春: 吉林大学)]

    [15]

    Santecchia E, Hamouda A, Musharavati F, Zalnezhad E, Cabibbo M, Spigarelli S 2015 Ceram. Int. 41 10349

    [16]

    Patsalas P, Kalfagiannis N, Kassavetis S 2015 Materials 8 3128

    [17]

    Sue J, Chang T {1995 Surf. Coat. Technol. 76 61

    [18]

    Bringans R D, Hchst H 1984 Phys. Rev. B 30 5416

    [19]

    Benia H M, Guemmaz M, Schmerber G, Mosser A, Parlebas J C 2002 Appl. Surf. Sci. 200 231

    [20]

    Chen X J, Struzhkin V V, Wu Z, Somayazulu M, Qian J, Kung S, Christensen A N, Zhao Y, Cohen R E, Mao H K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 3198

    [21]

    Zhao E, Wu Z 2008 J. Solid State Chem. 181 2814

    [22]

    Reza M, Lech A T, Miao X, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. U.S.A. 108 10958

    [23]

    Yamanaka S, Hotehama K I, Kawaji H 1998 Nature 392 580

    [24]

    Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S 2004 J. Mater. Sci. 39 5925

    [25]

    Johansson B O, Sundgren J E, Helmersson U, Hibbs M K 1984 Appl. Phys. Lett. 44 670

    [26]

    Seo H S, Lee T Y, Wen J G, Petrov I, Greene J E, Gall D 2004 J. Appl. Phys. 96 878

    [27]

    Zerr A, Gerhard M, Ralf R 2003 Nat. Mater. 2 185

    [28]

    Bazhanov D I, Knizhnik A A, Safonov A A, Bagatur'yants A A, Stoker M W, Korkin A A 2005 J. Appl. Phys. 97 044108

    [29]

    Lyakhov A O, Oganov A R, Valle M 2010 Comput. Phys. Commun. 181 1623

    [30]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [31]

    Oganov A R, Lyakhov A O, Mario V 2011 Acc. Chem. Res. 44 227

    [32]

    Oganov, Artem R 2011 Modern Methods of Crystal Structure Prediction (New York: Wiley-VCH) pp147

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133

    [35]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [39]

    Wang S Q, Ye H Q 2003 J. Phys. Condens. Mat. 15 5307

    [40]

    Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349

    [41]

    Voigt W 1910 Lehrbuch der kristallphysik (Leipzig: B.G. Teubner) pp100

    [42]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49

    [43]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275

    [44]

    Ohodnicki Jr P, Cates N, Laughlin D, Mchenry M, Widom M 2008 Phys. Rev. B 78 144414

    [45]

    Morris A J, Grey C P, Needs R J, Pickard C J {2012 Phys. Rev. B 84 1894

    [46]

    Christensen A 1990 Acta Chem. Scand. 44 851

    [47]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [48]

    Shankar A R, Mudali U K, Chawla V, Chandra R 2013 Ceram. Int. 39 5175

    [49]

    Zaoui A, Bouhafs B, Ruterana P 2005 Mater. Chem. Phys. 91 108

    [50]

    Nagao S, Nordlund K, Nowak R {2006 Phys. Rev. B 73 144113

    [51]

    Patil S K R, Mangale N S, Khare S V, Marsillac S 2008 Thin Solid Films 517 824

    [52]

    Chen Z Q, Wang J, Li C M 2013 J. Alloys Compd. 575 137

    [53]

    Peter K 2003 Phys. Rev. Lett. 90 125501

    [54]

    Cowley R 1976 Phys. Rev. B 13 4877

    [55]

    Liu A Y, Wentzcovitch R M 1994 Phys. Rev. B 50 10362

    [56]

    Karki B B, Ackland G J, Crain J 1997 J. Phys. Condens. Mat. 9 8579

    [57]

    Yang Q, Lengauer W, Koch T, Scheerer M, Smid I 2000 J. Alloys Compd. 309 L5

    [58]

    Gupta D C, Chauhan M, Bhat I H {2014 J. Appl. Phys. 1591 36

    [59]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [60]

    Jacobson B E, Nimmagadda R, Bunshah R F 1979 Thin Solid Films 63 333

    [61]

    Deringer V L, Tchougreff A L, Richard D 2011 J. Phys. Chem. A 115 5461

    [62]

    Dronskowski R, Bloechl P E 1993 J. Phys. Chem. 97 8617

  • [1]

    Zhang L L, Fu Q G, Li H J {2015 Mater. Chin. 34 675 (in Chinese) [张磊磊, 付前刚, 李贺军 2015 中国材料进展 34 675]

    [2]

    Xie Y, Cheng L, Li L, Mei H, Zhang L 2013 J. Eur. Ceram. Soc. 33 1701

    [3]

    Li H, Zhang L, Cheng L, Wang Y, Yu Z, Huang M, Tu H, Xia H 2008 J. Mater. Sci. 43 2806

    [4]

    Huang S H, Liu J 2014 Chin. Phys. B 23 058105

    [5]

    Wang C L, Yu B H, Huo H L, Chen D, Sun H B 2009 Chin. Phys. B 18 1248

    [6]

    Zhao L K, Zhao E J, Wu Z J 2013 Acta Phys. Sin. 62 046201 (in Chinese) [赵立凯, 赵二俊, 武志坚 2013 物理学报 62 046201]

    [7]

    Zhang G T, Bai T T, Yan H Y, Zhao Y R 2015 Chin. Phys. B 24 106104

    [8]

    Peng J H, Zeng Q F, Xie C W, Zhu K J, Tan J H {2015 Acta Phys. Sin. 64 236102 (in Chinese) [彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华 2015 物理学报 64 236102]

    [9]

    Zhang M G, Yan H Y, Zhang G T, Wang H 2012 Chin. Phys. B 21 076103

    [10]

    Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C, Zhang F W 2014 Chin. Phys. B 23 026201

    [11]

    Li X F, Zhai H C, Fu H Z, Liu Z L, Ji G F 2011 Chin. Phys. B 20 093101

    [12]

    Zhao W J, Wang Y X 2009 Chin. Phys. B 18 3934

    [13]

    Wang J, Li C M, Ao J, Li F, Chen Z Q 2013 Acta Phys. Sin. 62 087102 (in Chinese) [王瑨, 李春梅, 敖靖, 李凤, 陈志谦 2013 物理学报 62 087102]

    [14]

    Xun X C 2008 M.S. Dissertation (Changchun: Jilin University) (in Chinese) [荀显超 2008 硕士学位论文 (长春: 吉林大学)]

    [15]

    Santecchia E, Hamouda A, Musharavati F, Zalnezhad E, Cabibbo M, Spigarelli S 2015 Ceram. Int. 41 10349

    [16]

    Patsalas P, Kalfagiannis N, Kassavetis S 2015 Materials 8 3128

    [17]

    Sue J, Chang T {1995 Surf. Coat. Technol. 76 61

    [18]

    Bringans R D, Hchst H 1984 Phys. Rev. B 30 5416

    [19]

    Benia H M, Guemmaz M, Schmerber G, Mosser A, Parlebas J C 2002 Appl. Surf. Sci. 200 231

    [20]

    Chen X J, Struzhkin V V, Wu Z, Somayazulu M, Qian J, Kung S, Christensen A N, Zhao Y, Cohen R E, Mao H K 2005 Proc. Natl. Acad. Sci. U.S.A. 102 3198

    [21]

    Zhao E, Wu Z 2008 J. Solid State Chem. 181 2814

    [22]

    Reza M, Lech A T, Miao X, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. U.S.A. 108 10958

    [23]

    Yamanaka S, Hotehama K I, Kawaji H 1998 Nature 392 580

    [24]

    Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S 2004 J. Mater. Sci. 39 5925

    [25]

    Johansson B O, Sundgren J E, Helmersson U, Hibbs M K 1984 Appl. Phys. Lett. 44 670

    [26]

    Seo H S, Lee T Y, Wen J G, Petrov I, Greene J E, Gall D 2004 J. Appl. Phys. 96 878

    [27]

    Zerr A, Gerhard M, Ralf R 2003 Nat. Mater. 2 185

    [28]

    Bazhanov D I, Knizhnik A A, Safonov A A, Bagatur'yants A A, Stoker M W, Korkin A A 2005 J. Appl. Phys. 97 044108

    [29]

    Lyakhov A O, Oganov A R, Valle M 2010 Comput. Phys. Commun. 181 1623

    [30]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704

    [31]

    Oganov A R, Lyakhov A O, Mario V 2011 Acc. Chem. Res. 44 227

    [32]

    Oganov, Artem R 2011 Modern Methods of Crystal Structure Prediction (New York: Wiley-VCH) pp147

    [33]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 864

    [34]

    Kohn W, Sham L J 1965 Phys. Rev. 140 1133

    [35]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [37]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [39]

    Wang S Q, Ye H Q 2003 J. Phys. Condens. Mat. 15 5307

    [40]

    Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349

    [41]

    Voigt W 1910 Lehrbuch der kristallphysik (Leipzig: B.G. Teubner) pp100

    [42]

    Reuss A 1929 Z. Angew. Math. Mech. 9 49

    [43]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275

    [44]

    Ohodnicki Jr P, Cates N, Laughlin D, Mchenry M, Widom M 2008 Phys. Rev. B 78 144414

    [45]

    Morris A J, Grey C P, Needs R J, Pickard C J {2012 Phys. Rev. B 84 1894

    [46]

    Christensen A 1990 Acta Chem. Scand. 44 851

    [47]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [48]

    Shankar A R, Mudali U K, Chawla V, Chandra R 2013 Ceram. Int. 39 5175

    [49]

    Zaoui A, Bouhafs B, Ruterana P 2005 Mater. Chem. Phys. 91 108

    [50]

    Nagao S, Nordlund K, Nowak R {2006 Phys. Rev. B 73 144113

    [51]

    Patil S K R, Mangale N S, Khare S V, Marsillac S 2008 Thin Solid Films 517 824

    [52]

    Chen Z Q, Wang J, Li C M 2013 J. Alloys Compd. 575 137

    [53]

    Peter K 2003 Phys. Rev. Lett. 90 125501

    [54]

    Cowley R 1976 Phys. Rev. B 13 4877

    [55]

    Liu A Y, Wentzcovitch R M 1994 Phys. Rev. B 50 10362

    [56]

    Karki B B, Ackland G J, Crain J 1997 J. Phys. Condens. Mat. 9 8579

    [57]

    Yang Q, Lengauer W, Koch T, Scheerer M, Smid I 2000 J. Alloys Compd. 309 L5

    [58]

    Gupta D C, Chauhan M, Bhat I H {2014 J. Appl. Phys. 1591 36

    [59]

    Chung H Y, Weinberger M B, Yang J M, Tolbert S H, Kaner R B 2008 Appl. Phys. Lett. 92 261904

    [60]

    Jacobson B E, Nimmagadda R, Bunshah R F 1979 Thin Solid Films 63 333

    [61]

    Deringer V L, Tchougreff A L, Richard D 2011 J. Phys. Chem. A 115 5461

    [62]

    Dronskowski R, Bloechl P E 1993 J. Phys. Chem. 97 8617

  • [1] 彭立明, 丁文江, 余伟阳, 唐壁玉. α-Mg3Sb2的电子结构和力学性能. 物理学报, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [2] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [3] 彭军辉, 曾庆丰, 谢聪伟, 朱开金, 谭俊华. Hf-C体系的高压结构预测及电子性质第一性原理模拟. 物理学报, 2015, 64(23): 236102. doi: 10.7498/aps.64.236102
    [4] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [5] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [6] 魏 仑, 梅芳华, 邵 楠, 董云杉, 李戈扬. TiN/TiB2异结构纳米多层膜的共格生长与力学性能. 物理学报, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
    [7] 罗庆洪, 娄艳芝, 赵振业, 杨会生. 退火对AlTiN多层薄膜结构及力学性能影响. 物理学报, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [8] 罗庆洪, 陆永浩, 娄艳芝. Ti-B-C-N纳米复合薄膜结构及力学性能研究. 物理学报, 2011, 60(8): 086802. doi: 10.7498/aps.60.086802
    [9] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [10] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [11] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [12] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [13] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [14] 王颖, 卢铁城, 王跃忠, 岳顺利, 齐建起, 潘磊. 虚晶近似法研究AlN-Al2O3固溶体系的力学性能和电子结构. 物理学报, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [15] 潘新东, 魏燕, 蔡宏中, 祁小红, 郑旭, 胡昌义, 张诩翔. 基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响. 物理学报, 2016, 65(15): 156201. doi: 10.7498/aps.65.156201
    [16] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究. 物理学报, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [17] 吴江滨, 钱耀, 郭小杰, 崔先慧, 缪灵, 江建军. 硅纳米团簇与石墨烯复合结构储锂性能的第一性原理研究. 物理学报, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [18] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [19] 宋仁伯, 杜大伟, 刘娜娜, 孙翰英. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [20] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1135
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-24
  • 修回日期:  2016-03-08
  • 刊出日期:  2016-06-05

Hf-N体系的晶体结构预测和性质的第一性原理研究

  • 1. 西北工业大学, 材料基因组国际合作研究中心, 西安 710072;
  • 2. 西北工业大学, 超高温结构复合材料重点实验室, 西安 710072
  • 通信作者: 曾庆丰, qfzeng@nwpu.edu.cn
    基金项目: 

    国家自然科学基金(批准号: 51372203, 51332004)和中央高校基本科研业务费专项资金(批准号: 3102015BJ(II) JGZ005)资助的课题.

摘要: 为了寻找具有优异力学性能的新型超高温陶瓷材料, 结合进化算法和第一性原理, 系统研究了Hf-N二元体系所有稳定存在的化合物及其晶体结构. 除了实验已知的岩盐结构的HfN之外, 本文还找到了Hf6N(R-3), Hf3N(P6322), Hf3N2(R-3m), Hf5N6(C2/m)和Hf3N4(C2/m)五种新结构, 基于准简谐近似原理计算了这些稳定结构的声子谱以验证其动力学稳定性, 常温甚至更高温度下的吉布斯自由能以验证其高温热力学稳定性. 结果表明, 这些结构是动力学稳定的, 且在1500 K以下都是热力学稳定的. 同时, 本文还列出了在搜索过程中出现的空间对称性较高、能量较低的亚稳态结构, 包括Hf2N(P42/mnm), Hf4N3(C2/m), Hf6N5(C2/m), Hf4N5(I4/m), Hf3N4(I-43d)和Hf3N4(Pnma). 之后计算了上述所有结构的力学性质(弹性常数、体模量、 剪切模量、 杨氏模量、硬度), 随着N 所占比例的增加, 硬度呈现的整体趋势是先增大后下降, 在Hf5N6处取得最大值, 为21 GPa. 其中Hf3N2和Hf4N5也展现出了较高的硬度, 都为19 GPa. 最后, 计算了这些结构的电子态密度和晶体轨道汉密尔顿分布, 从电子结构的角度分析了力学性能的成因. 研究结果显示, 较强的Hf-N共价键和较低的结构空位率是Hf5N6具有优异力学性能的主要原因.

English Abstract

参考文献 (62)

目录

    /

    返回文章
    返回