搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于4H-SiC肖特基势垒二极管的射线探测器

杜园园 张春雷 曹学蕾

基于4H-SiC肖特基势垒二极管的射线探测器

杜园园, 张春雷, 曹学蕾
PDF
导出引用
  • 针对极端环境下耐高温和耐辐照半导体核探测器的研制需求,采用外延层厚度为100 upm的4H碳化硅(4H-SiC)制备成肖特基二极管探测器,研究了该探测器对241Am源射线的能谱响应.采用磁控溅射金属Ni制备了肖特基二极管的欧姆接触和肖特基接触,利用室温电流-电压和电容-电压测试研究了二极管的电学特性.欧姆特性测试表明,1050℃退火时,欧姆接触特性最好.从正向电流-电压曲线得出二极管肖特基势垒高度为1.617 eV,理想因子为1.127,表明探测器具备良好的热电子发射特性.从电容-电压曲线获得二极管外延层净掺杂浓度为2.9031014 cm-3,并研究了自由载流子浓度在外延层中的纵向分布.在反向偏压为500 V时,二极管的漏电流只有2.11 nA,具有较高的击穿电压.测得在-300 V条件下,SiC二极管探测器对能量为59.5 keV的射线的能量分辨率为9.49%(5.65 keV).
      通信作者: 杜园园, duyuanyuan@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11203026)资助的课题.
    [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2142
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 修回日期:  2016-07-29
  • 刊出日期:  2016-10-05

基于4H-SiC肖特基势垒二极管的射线探测器

  • 1. 中国科学院高能物理研究所, 粒子天体物理重点实验室, 北京 100049
  • 通信作者: 杜园园, duyuanyuan@ihep.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11203026)资助的课题.

摘要: 针对极端环境下耐高温和耐辐照半导体核探测器的研制需求,采用外延层厚度为100 upm的4H碳化硅(4H-SiC)制备成肖特基二极管探测器,研究了该探测器对241Am源射线的能谱响应.采用磁控溅射金属Ni制备了肖特基二极管的欧姆接触和肖特基接触,利用室温电流-电压和电容-电压测试研究了二极管的电学特性.欧姆特性测试表明,1050℃退火时,欧姆接触特性最好.从正向电流-电压曲线得出二极管肖特基势垒高度为1.617 eV,理想因子为1.127,表明探测器具备良好的热电子发射特性.从电容-电压曲线获得二极管外延层净掺杂浓度为2.9031014 cm-3,并研究了自由载流子浓度在外延层中的纵向分布.在反向偏压为500 V时,二极管的漏电流只有2.11 nA,具有较高的击穿电压.测得在-300 V条件下,SiC二极管探测器对能量为59.5 keV的射线的能量分辨率为9.49%(5.65 keV).

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回