搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率激光装置熔石英紫外损伤增长研究

韩伟 冯斌 郑奎兴 朱启华 郑万国 巩马理

高功率激光装置熔石英紫外损伤增长研究

韩伟, 冯斌, 郑奎兴, 朱启华, 郑万国, 巩马理
PDF
导出引用
导出核心图
  • 基于大口径高功率激光装置开展了熔石英紫外损伤增长的实验研究.研究结果表明:在5 ns平顶脉冲的紫外激光辐照下,熔石英后表面损伤点尺寸随激光发次主要服从指数增长规律,且损伤增长速率随激光通量的增加而上升;但是,在相同的激光通量下损伤增长速率并非一个恒定值,而是存在一定的分布范围,说明除激光通量外还存在其他的影响因素.进一步的统计分析表明,在相同的激光通量下,小尺寸损伤点的平均增长速率高于大尺寸损伤点,表明损伤增长速率不仅与激光通量有关,还与损伤点尺寸有关.由于损伤增长主要源于损伤坑轴向和纵向裂纹在力学作用下发生扩展,因此小尺寸损伤点增长速率高于大尺寸损伤点增长速率说明小尺寸损伤点更易将激光能量耦合为弹性应变能.研究结果对熔石英使用寿命的精确预测和损伤机理的深入认识具有重要意义.
      通信作者: 巩马理, gongml@mail.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61505187)资助的课题.
    [1]

    Bercegol H, Boscheron A, Di-Nicola J M, Journot E, Lamaignère L, Něauport J, Razě G 2008 J. Phys. Conf. Ser. 112 032013

    [2]

    Chambonneau M, Grua P, Rullier J L, Natoli J Y, Lamaignère L 2015 J. Appl. Phys. 117 103101

    [3]

    Bertussi B, Cormont P, Palmier S, Legros P, Rullier J L 2009 Opt. Express 17 11469

    [4]

    Wong J, Ferriera J L, Lindsey E F, Haupt D L, Hutcheon I D, Kinney J H 2006 J. Non-cryst. Solids 352 255

    [5]

    Norton M A, Hrubesh L W, Wu Z, Donohue E E, Feit M D, Kozlowski M R, Milam D, Neeb K P, Molander W A, Rubenchik A M, Sell W D, Wegner P 2001 Proc. SPIE 4347 468

    [6]

    Razě G, Morchain J M, Loiseau M, Lamaignere L, Josse M A, Bercegol H 2003 Proc. SPIE 4932 127

    [7]

    Norton M A, Donohue E E, Hollingsworth W G, McElroy J N, Hackel R P 2004 Proc. SPIE 5273 236

    [8]

    Norton M A, Donohue E E, Feit M D, Hackel R P, Hollingsworth W G, Rubenchik A M, Spaeth M L 2005 Proc. SPIE 5991 599108

    [9]

    Norton M A, Donohue E E, Feit M D, Hackel R P, Hollingsworth W G, Rubenchik A M, Spaeth M L 2007 Proc. SPIE 6403 64030L

    [10]

    Norton M A, Carr A V, Carr C W, Donohue E E, Feit M D, Hollingsworth W G, Liao Z, Negres R A, Rubenchik A M, Wegner P 2008 Proc. SPIE 7132 71321H

    [11]

    Negres R A, Norton M A, Cross D A, Carr C W 2010 Opt. Express 18 19966

    [12]

    Lamaignère L, Reyné S, Loiseau M, Poncetta J C, Bercegol H 2007 Proc. SPIE 6720 67200F

    [13]

    Raman R N, Demos S G, Shen N, Feigenbaum E, Negres R A, Elhadj S, Rubenchik A M, Matthews M J 2016 Opt. Express 24 2634

    [14]

    Laurence T A, Bude J D, Shen N, Feldman T, Miller P E, Steele W A, Suratwala T I 2009 Appl. Phys. Lett. 94 151114

    [15]

    Demos S G, Negres R A, Raman R N, Shen N, Rubenchik A M, Matthews M J 2016 Opt. Express 24 7792

    [16]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit M D, Laurence T A, Norton M A, Carr C W, Wong L L 2011 J. Am. Ceram. Soc. 94 416

    [17]

    Ye X, Huang J, Liu H J, Geng F, Sun L X, Jiang X D, Wu W D, Qiao L, Zu X T, Zheng W G 2016 Sci. Rep. 6 31111

    [18]

    Negres R A, Abdulla G M, Cross D A, Liao Z M, Carr C W 2012 Opt. Express 20 13030

    [19]

    Negres R A, Liao Z M, Abdulla G M, Cross D A, Norton M A, Carr C W 2011 Appl. Opt. 50 D12

    [20]

    Lamaignère L, Dupuy G, Bourgeade A, Benoist A, Roques A, Courchinoux R 2014 Appl. Phys. B 114 517

    [21]

    Negres R A, Cross D A, Liao Z M, Mattews M J, Carr C W 2014 Opt. Express 22 3824

    [22]

    Lamaignère L, Dupuy G, Donval T, Grua P, Bercegol H 2011 Appl. Opt. 50 441

    [23]

    Han W, Huang W W, Wang F, Li K Y, Feng B, Li F Q, Jing F, Zheng W G 2010 Chin. Phys. B 19 106105

    [24]

    Liao Z M, Abdulla G M, Negres R A, Cross D A, Carr C W 2012 Opt. Express 20 15569

    [25]

    Liao Z M, Raymond B, Gaylord J, Fallejo R, Bude J, Wegner P 2014 Opt. Express 22 28845

    [26]

    Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proc. SPIE 6403 64030K

  • [1]

    Bercegol H, Boscheron A, Di-Nicola J M, Journot E, Lamaignère L, Něauport J, Razě G 2008 J. Phys. Conf. Ser. 112 032013

    [2]

    Chambonneau M, Grua P, Rullier J L, Natoli J Y, Lamaignère L 2015 J. Appl. Phys. 117 103101

    [3]

    Bertussi B, Cormont P, Palmier S, Legros P, Rullier J L 2009 Opt. Express 17 11469

    [4]

    Wong J, Ferriera J L, Lindsey E F, Haupt D L, Hutcheon I D, Kinney J H 2006 J. Non-cryst. Solids 352 255

    [5]

    Norton M A, Hrubesh L W, Wu Z, Donohue E E, Feit M D, Kozlowski M R, Milam D, Neeb K P, Molander W A, Rubenchik A M, Sell W D, Wegner P 2001 Proc. SPIE 4347 468

    [6]

    Razě G, Morchain J M, Loiseau M, Lamaignere L, Josse M A, Bercegol H 2003 Proc. SPIE 4932 127

    [7]

    Norton M A, Donohue E E, Hollingsworth W G, McElroy J N, Hackel R P 2004 Proc. SPIE 5273 236

    [8]

    Norton M A, Donohue E E, Feit M D, Hackel R P, Hollingsworth W G, Rubenchik A M, Spaeth M L 2005 Proc. SPIE 5991 599108

    [9]

    Norton M A, Donohue E E, Feit M D, Hackel R P, Hollingsworth W G, Rubenchik A M, Spaeth M L 2007 Proc. SPIE 6403 64030L

    [10]

    Norton M A, Carr A V, Carr C W, Donohue E E, Feit M D, Hollingsworth W G, Liao Z, Negres R A, Rubenchik A M, Wegner P 2008 Proc. SPIE 7132 71321H

    [11]

    Negres R A, Norton M A, Cross D A, Carr C W 2010 Opt. Express 18 19966

    [12]

    Lamaignère L, Reyné S, Loiseau M, Poncetta J C, Bercegol H 2007 Proc. SPIE 6720 67200F

    [13]

    Raman R N, Demos S G, Shen N, Feigenbaum E, Negres R A, Elhadj S, Rubenchik A M, Matthews M J 2016 Opt. Express 24 2634

    [14]

    Laurence T A, Bude J D, Shen N, Feldman T, Miller P E, Steele W A, Suratwala T I 2009 Appl. Phys. Lett. 94 151114

    [15]

    Demos S G, Negres R A, Raman R N, Shen N, Rubenchik A M, Matthews M J 2016 Opt. Express 24 7792

    [16]

    Suratwala T I, Miller P E, Bude J D, Steele W A, Shen N, Monticelli M V, Feit M D, Laurence T A, Norton M A, Carr C W, Wong L L 2011 J. Am. Ceram. Soc. 94 416

    [17]

    Ye X, Huang J, Liu H J, Geng F, Sun L X, Jiang X D, Wu W D, Qiao L, Zu X T, Zheng W G 2016 Sci. Rep. 6 31111

    [18]

    Negres R A, Abdulla G M, Cross D A, Liao Z M, Carr C W 2012 Opt. Express 20 13030

    [19]

    Negres R A, Liao Z M, Abdulla G M, Cross D A, Norton M A, Carr C W 2011 Appl. Opt. 50 D12

    [20]

    Lamaignère L, Dupuy G, Bourgeade A, Benoist A, Roques A, Courchinoux R 2014 Appl. Phys. B 114 517

    [21]

    Negres R A, Cross D A, Liao Z M, Mattews M J, Carr C W 2014 Opt. Express 22 3824

    [22]

    Lamaignère L, Dupuy G, Donval T, Grua P, Bercegol H 2011 Appl. Opt. 50 441

    [23]

    Han W, Huang W W, Wang F, Li K Y, Feng B, Li F Q, Jing F, Zheng W G 2010 Chin. Phys. B 19 106105

    [24]

    Liao Z M, Abdulla G M, Negres R A, Cross D A, Carr C W 2012 Opt. Express 20 15569

    [25]

    Liao Z M, Raymond B, Gaylord J, Fallejo R, Bude J, Wegner P 2014 Opt. Express 22 28845

    [26]

    Carr C W, Matthews M J, Bude J D, Spaeth M L 2007 Proc. SPIE 6403 64030K

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1223
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-26
  • 修回日期:  2016-09-12
  • 刊出日期:  2016-12-05

高功率激光装置熔石英紫外损伤增长研究

  • 1. 清华大学精密仪器系, 北京 100084;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
  • 通信作者: 巩马理, gongml@mail.tsinghua.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61505187)资助的课题.

摘要: 基于大口径高功率激光装置开展了熔石英紫外损伤增长的实验研究.研究结果表明:在5 ns平顶脉冲的紫外激光辐照下,熔石英后表面损伤点尺寸随激光发次主要服从指数增长规律,且损伤增长速率随激光通量的增加而上升;但是,在相同的激光通量下损伤增长速率并非一个恒定值,而是存在一定的分布范围,说明除激光通量外还存在其他的影响因素.进一步的统计分析表明,在相同的激光通量下,小尺寸损伤点的平均增长速率高于大尺寸损伤点,表明损伤增长速率不仅与激光通量有关,还与损伤点尺寸有关.由于损伤增长主要源于损伤坑轴向和纵向裂纹在力学作用下发生扩展,因此小尺寸损伤点增长速率高于大尺寸损伤点增长速率说明小尺寸损伤点更易将激光能量耦合为弹性应变能.研究结果对熔石英使用寿命的精确预测和损伤机理的深入认识具有重要意义.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回