搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于透明平板平行度和均匀性测量的单元件干涉仪

兰斌 冯国英 张涛 梁井川 周寿桓

引用本文:
Citation:

用于透明平板平行度和均匀性测量的单元件干涉仪

兰斌, 冯国英, 张涛, 梁井川, 周寿桓

A single-element interferometer for measuring parallelism and uniformity of transparent plate

Lan Bin, Feng Guo-Ying, Zhang Tao, Liang Jing-Chuan, Zhou Shou-Huan
PDF
导出引用
  • 提出了一种基于单元件干涉的用于检测透明介质平整度和均匀性的干涉仪.该干涉仪的核心元件是一个菱形分光棱镜.激光光源的平面波光束的一半光束透过待测样品,另一半光束直接透过空气,然后分别入射到菱形分光棱镜的两垂直面并在分光面相遇、相干.通过旋转待测样品改变相干的两束光光程差,从而使干涉条纹发生移动.形成的相干光被分光板分成两束,一束进入光电探测器用于探测干涉条纹移动数的整数部分,另一束则进入电荷耦合探测器用于采集干涉条纹图来计算干涉条纹移动数的小数部分.通过计算条纹移动数反推出光程差的变化量,再结合折射率或样品厚度信息则可以计算出样品厚度或折射率的分布,从而检测出透明介质的平行度和均匀性.模拟仿真和光学实验均证明了本方法的可行性、准确性和稳定性.
    The transparent plates (such as organic glass, plastic plate) are widely used in the construction industry, high-tech products and scientific research applications, and its parallelism and uniformity measurement in the manufacture and quality control become more and more inevitable. Interferometer is a label-free, high-precision, and high-efficient device that can be used in many fields. According to a single-element interferometer, we demonstrate a measurement for the parallelism and uniformity of transparent medium. Beam-splitter cube is a key component. Half of plane wave laser source passes through the measured medium and the remaining half directly passes through the air, then these two halves with different optical paths meet in the beam-splitter cube. The parallelism or uniformity is determined by calculating interference fringe shift number during rotating the measured sample. The coherent beam is divided into two parts by a beam-splitter, one passes through the lens and then arrives at a photoelectric counter, and the other arrives at the observation plane of the charge-coupled device. The photoelectric counter is used to count the integer part of fringe shift number during rotating the sample; and the decimal part can be detected by calculating the phase difference of the two interferograms captured before and after rotation. The measurement principle of the proposed device is analyzed in detail, and the numerical simulations of the fringe shift number and the gray level changing with the sample rotation angle, the thickness and the refractive index of the sample are carried out. The simulation results show that the bigger the rotation angle, thickness and refractive index of the sample, the greater the fringe shift number will be. Therefore, the measurement accuracy can be improved by increasing the rotation angle and the thickness of the sample. In addition, we also simulate the measurement processes of two kinds of samples, which are unparallel and inhomogeneous transparent plates. The simulation results prove the feasibility and high accuracy of the proposed method. Finally, the optical experiment is conducted to demonstrate the practicability of the present device. The parallelism of a cuvette used for more than one year, is tested by our device. The results show that the difference in thickness between the cuvettes is on a micron scale, the peak-valley (PV) value is 9.92 m, and the root mean square (RMS) value is 2.2 m. And the difference between the contrast test results and the results from the proposed method is very small, the PV value is 0.569 m, and the RMS value is 0.131 m. The stability and repeatability of the proposed setup are tested in the experimental condition. The mean value and standard deviation of the fringe shift number during 30 min are 0.0012 and 0.0008, respectively. These results further testify the high accuracy and stability of our method. In conclusion, the performance of our measurement method is demonstrated with numerical simulation and optical experiment.
      通信作者: 冯国英, guoing_feng@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574221)资助的课题.
      Corresponding author: Feng Guo-Ying, guoing_feng@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574221).
    [1]

    Chen L F, Ren Y Q, Li J 2010 Opt. Eng. 49 050503

    [2]

    Jiang X Q, Wang K W, Gao F, Muhamedsalih H 2010 Appl. Opt. 49 2903

    [3]

    Wang D D, Yang Y Y, Chen C, Zhuo Y M 2011 Appl. Opt. 50 2342

    [4]

    Chen L F, Guo X F, Hao J J 2013 Appl. Opt. 52 3655

    [5]

    Zhang T, Feng G Y, Song Z Y, Zhou S H 2014 Opt. Commun. 332 14

    [6]

    Lan B, Feng G Y, Zhang T, Zhou S H 2017 J. Mod. Opt. 64 8

    [7]

    Wang Y, Qiu L R, Yang J M, Zhao W Q 2013 Optik 124 2825

    [8]

    Bai H Y, Shan M G, Zhong Z, Guo L L, Zhang Y B 2015 Opt. Lasers Eng. 75 1

    [9]

    Bai Y, Zhao W J, Ren D M, Qu Y C, Liu C, Yuan J H, Qian L M, Chen Z L 2012 Acta Phys. Sin. 61 094218 (in Chinese) [白岩, 赵卫疆, 任德明, 曲彦臣, 刘闯, 袁晋鹤, 钱黎明, 陈振雷 2012 物理学报 61 094218]

    [10]

    Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 物理学报 62 184206]

    [11]

    Wang Y, Qiu L R, Song Y X, Zhao W Q 2012 Meas. Sci. Technol. 23 055204

    [12]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156

    [13]

    Du Y Z, Feng G Y, Li H R, Vargas J, Zhou S H 2012 Opt. Express 20 16471

    [14]

    Lan B, Feng G Y, Dong Z L, Zhang T, Zhou S H 2016 Optik 127 5961

    [15]

    Ferrari J A, Frins E M 2007 Opt. Commun. 279 235

  • [1]

    Chen L F, Ren Y Q, Li J 2010 Opt. Eng. 49 050503

    [2]

    Jiang X Q, Wang K W, Gao F, Muhamedsalih H 2010 Appl. Opt. 49 2903

    [3]

    Wang D D, Yang Y Y, Chen C, Zhuo Y M 2011 Appl. Opt. 50 2342

    [4]

    Chen L F, Guo X F, Hao J J 2013 Appl. Opt. 52 3655

    [5]

    Zhang T, Feng G Y, Song Z Y, Zhou S H 2014 Opt. Commun. 332 14

    [6]

    Lan B, Feng G Y, Zhang T, Zhou S H 2017 J. Mod. Opt. 64 8

    [7]

    Wang Y, Qiu L R, Yang J M, Zhao W Q 2013 Optik 124 2825

    [8]

    Bai H Y, Shan M G, Zhong Z, Guo L L, Zhang Y B 2015 Opt. Lasers Eng. 75 1

    [9]

    Bai Y, Zhao W J, Ren D M, Qu Y C, Liu C, Yuan J H, Qian L M, Chen Z L 2012 Acta Phys. Sin. 61 094218 (in Chinese) [白岩, 赵卫疆, 任德明, 曲彦臣, 刘闯, 袁晋鹤, 钱黎明, 陈振雷 2012 物理学报 61 094218]

    [10]

    Du J, Zhao W J, Qu Y C, Chen Z L, Geng L J 2013 Acta Phys. Sin. 62 184206 (in Chinese) [杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰 2013 物理学报 62 184206]

    [11]

    Wang Y, Qiu L R, Song Y X, Zhao W Q 2012 Meas. Sci. Technol. 23 055204

    [12]

    Takeda M, Ina H, Kobayashi S 1982 J. Opt. Soc. Am. 72 156

    [13]

    Du Y Z, Feng G Y, Li H R, Vargas J, Zhou S H 2012 Opt. Express 20 16471

    [14]

    Lan B, Feng G Y, Dong Z L, Zhang T, Zhou S H 2016 Optik 127 5961

    [15]

    Ferrari J A, Frins E M 2007 Opt. Commun. 279 235

  • [1] 张银胜, 童俊毅, 陈戈, 单梦姣, 王硕洋, 单慧琳. 基于多尺度特征增强的合成孔径光学图像复原. 物理学报, 2024, 73(6): 064203. doi: 10.7498/aps.73.20231761
    [2] 种涛, 傅华, 李涛, 莫建军, 张旭平, 马骁, 郑贤旭. 一种同步研究透明材料折射率和动力学特性的实验方法. 物理学报, 2021, 70(17): 176201. doi: 10.7498/aps.70.20210414
    [3] 白立春, 孙劲光, 高艳东. 气泡在超声场中绕圈运动的高速摄影及其图像分析. 物理学报, 2021, 70(5): 054701. doi: 10.7498/aps.70.20201381
    [4] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究. 物理学报, 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [5] 彭博栋, 宋岩, 盛亮, 王培伟, 黑东炜, 赵军, 李阳, 张美, 李奎念. 辐射致折射率变化用于MeV级脉冲辐射探测的初步研究. 物理学报, 2016, 65(15): 157801. doi: 10.7498/aps.65.157801
    [6] 张旭平, 罗斌强, 种涛, 王桂吉, 谭福利, 赵剑衡, 孙承纬, 刘仓理. 磁驱动准等熵加载下Z切石英晶体的折射率. 物理学报, 2016, 65(4): 046201. doi: 10.7498/aps.65.046201
    [7] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [8] 王小飞, 杨华军, 张戈, 张庆礼, 窦仁勤, 丁守军, 罗建乔, 刘文鹏, 孙贵花, 孙敦陆. 自准直法测GdTaO4晶体折射率. 物理学报, 2016, 65(8): 087801. doi: 10.7498/aps.65.087801
    [9] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究. 物理学报, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [10] 朱胜军, 王圣来, 刘琳, 王端良, 李伟东, 黄萍萍, 许心光. 大尺寸磷酸二氢钾晶体的折射率均一性研究. 物理学报, 2014, 63(10): 107701. doi: 10.7498/aps.63.107701
    [11] 吴迎春, 吴学成, Sawitree Saengkaew, 姜淏予, 洪巧巧, Gérard Gréhan, 岑可法. 全场彩虹技术测量喷雾浓度及粒径分布. 物理学报, 2013, 62(9): 090703. doi: 10.7498/aps.62.090703
    [12] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [13] 花世群, 骆英. 发光光弹性涂层折射率测量方法. 物理学报, 2013, 62(5): 057801. doi: 10.7498/aps.62.057801
    [14] 杨健戈, 孙成林, 杨永波, 高淑琴, 姜永恒, 里佐威. 改变溶液折射率方法研究Fermi共振. 物理学报, 2012, 61(3): 037802. doi: 10.7498/aps.61.037802
    [15] 李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫. 冲击压缩下Z-切石英的弹性响应特性和折射率. 物理学报, 2010, 59(4): 2691-2696. doi: 10.7498/aps.59.2691
    [16] 延凤平, 郑 凯, 王 琳, 李一凡, 龚桃荣, 简水生, 尾形健一, 小池一步, 佐佐诚彦, 井上正崇, 矢野满明. 分子束外延法在Sapphire衬底上生长的Zn1-xMgxO薄膜折射率及厚度的测试. 物理学报, 2007, 56(7): 4127-4131. doi: 10.7498/aps.56.4127
    [17] 穆全全, 刘永军, 胡立发, 李大禹, 曹召良, 宣 丽. 光谱型椭偏仪对各向异性液晶层的测量. 物理学报, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [18] 万新明, 贺天厚, 林 迪, 徐海清, 罗豪甦. 铁电单晶0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3折射率的研究. 物理学报, 2003, 52(9): 2319-2323. doi: 10.7498/aps.52.2319
    [19] 黄春福, 刘思敏, 张光寅, 郭 儒, 汪大云, 高垣梅, 陆 猗, 杨立森. 测量单轴晶体光学不均匀性和生长层的一种简便方法. 物理学报, 2003, 52(6): 1529-1532. doi: 10.7498/aps.52.1529
    [20] 阳世新, 李方华, 刘玉东, 古元新, 范海福. 直接法应用于蛋白质二维晶体的电子晶体学图像处理. 物理学报, 2000, 49(10): 1982-1987. doi: 10.7498/aps.49.1982
计量
  • 文章访问数:  4810
  • PDF下载量:  251
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2016-11-29
  • 刊出日期:  2017-03-05

/

返回文章
返回