搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相关变量随机数序列产生方法

马续波 刘佳艺 徐佳意 鲁凡 陈义学

相关变量随机数序列产生方法

马续波, 刘佳艺, 徐佳意, 鲁凡, 陈义学
PDF
导出引用
导出核心图
  • 当采用蒙特卡罗方法对很多问题进行研究时,有时需要对多维相关随机变量进行抽样.之前的研究表明:在协方差矩阵满足正定条件时,可以采用Cholesky分解方法产生多维相关随机变量.本文首先对产生多维相关随机变量的理论公式进行了推导,发现采用Cholesky分解并不是产生多维相关随机变量的唯一方法,其他的矩阵分解方法只要能满足协方差矩阵的分解条件,同样可以用来产生多维相关随机变量.同时给出了采用协方差矩阵、相对协方差矩阵和相关系数矩阵产生多维随机变量的公式,以方便以后使用.在此基础上,利用一个简单测试题和Jacobi矩阵分解方法对上述理论进行了验证.通过对大亚湾中微子能谱进行抽样分析,Jacobi矩阵分解和Cholesky矩阵分解结果一致.针对核工程中的不确定性分析常用的238U辐射俘获截面协方差矩阵进行分解时,由于协方差矩阵的矩阵本征值有负值,导致很多矩阵分解方法无法使用,在引入置零修正以后发现,与Cholesky对角线置零修正相比,Jacobi负本征值置零修正的误差更小.
      通信作者: 马续波, maxb@ncepu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11390383)和中央高校基本科研业务费(批准号:2015ZZD12)资助的课题.
    [1]

    Pei L C 1989 Computer Stochastic Simulation (Changsha:Hunan Science and Technology Press) p1(in Chinese)[裴鹿成1989计算机随机模拟(长沙:湖南科学出版社)第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing:Atomic Energy Press) p1(in Chinese)[许淑艳2006蒙特卡罗方法在实验核物理中的应用(第二版) (北京:原子能出版社)第1页]

    [3]

    Zhu Y S 2016 Statistic Analysis in High Energy Physics (Beijing:Science Press) p1(in Chinese)[朱永生2016高能物理实验统计分析(北京:科学出版社责任有限公司)第1页]

    [4]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York:Cambridge University Press) p1

    [5]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York:John Wiley & Sons, Inc.) p1

    [6]

    Matthew R B 2011 Ph. D. Dissertation (Hamilton:Mcmaster university)

    [7]

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta Phys. Sin. 66 012801(in Chinese)[胡泽华, 叶涛, 刘雄国, 王佳2017物理学报66 012801]

    [8]

    Wen D Z, Zhuo R H, Ding D J, Zheng H, Cheng J, Li Z H 2012 Acta Phys. Sin. 61 220204 (in Chinese)[文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏2012物理学报61 220204]

    [9]

    Guo Q 2011 M. S. Dissertation (Jiangsu:Soochow University) (in Chinese)[郭强2001硕士学位论文(江苏:苏州大学)]

    [10]

    An F P, Balantekin A B, Band H R, et al. 2017 Chin. Phys. C 41 013002

    [11]

    An F P, Balantekin A B, Band H R, et al. 2016 Phys. Rev. Lett. 116 061801

    [12]

    Ivanov K, Avramova M, Kamerow S, Kodeli I, Sartori E, Ivanov E, Cabellos O 2013 Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs, Volume I:Specification and Support Data for Neutronics Cases (Phase I), NEA/NSC/DOC (2013) 7 https://www.oecd-nea.org/science/docs/2013/nsc-doc2013-7pdf

    [13]

    Yamamoto A, Kinoshita K, Watanabe T, Endo T, Kodama Y, Ohoka Y, Ushino T, Nagano H 2015 Nucl. Sci. Engineer. 181 160

    [14]

    Park H J, Shim H J, Kim C H 2012 Sci. Technol. Nucl. Install. 2012 247

    [15]

    Curtis E M 2013 M. S. Dissertation (Hamilton:Mcmaster University)

    [16]

    Dan G C, Mihaela I B 2004 Nucl. Sci. Engineer. 147 204

    [17]

    Zwermann W, Aures A, Gallner L, et al. 2014 Nucl. Engineer. Technol. 46 3

    [18]

    Wan C H, Cao L Z, Wu H C, Zu T J, Shen W 2015 Atom. Energy Sci. Technol. 49 11(in Chinese)[万承辉, 曹良志, 吴宏春, 祖铁军, 沈伟2015原子能科学技术49 11]

    [19]

    Wang X Z, Yu H, Wang W M, Hu Y, Yang X Y 2014 Atom. Energy Sci. Technol. 48 9(in Chinese)[王新哲, 喻宏, 王文明, 胡赟, 杨晓燕2014原子能科学技术48 9]

    [20]

    Macfarlanef R, Kahler A 2010 Nuclear Data Sheets 111 2739

  • [1]

    Pei L C 1989 Computer Stochastic Simulation (Changsha:Hunan Science and Technology Press) p1(in Chinese)[裴鹿成1989计算机随机模拟(长沙:湖南科学出版社)第1页]

    [2]

    Xu S Y 2006 Monte Carlo Method and its Application in Nuclear Physics Experiment (2nd Ed.) (Beijing:Atomic Energy Press) p1(in Chinese)[许淑艳2006蒙特卡罗方法在实验核物理中的应用(第二版) (北京:原子能出版社)第1页]

    [3]

    Zhu Y S 2016 Statistic Analysis in High Energy Physics (Beijing:Science Press) p1(in Chinese)[朱永生2016高能物理实验统计分析(北京:科学出版社责任有限公司)第1页]

    [4]

    Landau D P, Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (2nd Ed.) (New York:Cambridge University Press) p1

    [5]

    Ferguson D M, Siepmann J I, Truhlar D G 1999 Monte Carlo Methods in Chemical Physics (New York:John Wiley & Sons, Inc.) p1

    [6]

    Matthew R B 2011 Ph. D. Dissertation (Hamilton:Mcmaster university)

    [7]

    Hu Z H, Ye T, Liu X G, Wang J 2017 Acta Phys. Sin. 66 012801(in Chinese)[胡泽华, 叶涛, 刘雄国, 王佳2017物理学报66 012801]

    [8]

    Wen D Z, Zhuo R H, Ding D J, Zheng H, Cheng J, Li Z H 2012 Acta Phys. Sin. 61 220204 (in Chinese)[文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏2012物理学报61 220204]

    [9]

    Guo Q 2011 M. S. Dissertation (Jiangsu:Soochow University) (in Chinese)[郭强2001硕士学位论文(江苏:苏州大学)]

    [10]

    An F P, Balantekin A B, Band H R, et al. 2017 Chin. Phys. C 41 013002

    [11]

    An F P, Balantekin A B, Band H R, et al. 2016 Phys. Rev. Lett. 116 061801

    [12]

    Ivanov K, Avramova M, Kamerow S, Kodeli I, Sartori E, Ivanov E, Cabellos O 2013 Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs, Volume I:Specification and Support Data for Neutronics Cases (Phase I), NEA/NSC/DOC (2013) 7 https://www.oecd-nea.org/science/docs/2013/nsc-doc2013-7pdf

    [13]

    Yamamoto A, Kinoshita K, Watanabe T, Endo T, Kodama Y, Ohoka Y, Ushino T, Nagano H 2015 Nucl. Sci. Engineer. 181 160

    [14]

    Park H J, Shim H J, Kim C H 2012 Sci. Technol. Nucl. Install. 2012 247

    [15]

    Curtis E M 2013 M. S. Dissertation (Hamilton:Mcmaster University)

    [16]

    Dan G C, Mihaela I B 2004 Nucl. Sci. Engineer. 147 204

    [17]

    Zwermann W, Aures A, Gallner L, et al. 2014 Nucl. Engineer. Technol. 46 3

    [18]

    Wan C H, Cao L Z, Wu H C, Zu T J, Shen W 2015 Atom. Energy Sci. Technol. 49 11(in Chinese)[万承辉, 曹良志, 吴宏春, 祖铁军, 沈伟2015原子能科学技术49 11]

    [19]

    Wang X Z, Yu H, Wang W M, Hu Y, Yang X Y 2014 Atom. Energy Sci. Technol. 48 9(in Chinese)[王新哲, 喻宏, 王文明, 胡赟, 杨晓燕2014原子能科学技术48 9]

    [20]

    Macfarlanef R, Kahler A 2010 Nuclear Data Sheets 111 2739

  • [1] 文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏. 蒙特卡罗模拟中相关变量随机数序列的产生方法 . 物理学报, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [2] 师学明, 伍 钧, 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良. 钚体源样品γ能谱计算的蒙特卡罗方法. 物理学报, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [3] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [4] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [5] 李树. 光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法. 物理学报, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [6] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [7] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟. 物理学报, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [8] 蒋刚, 李三伟, 王传珂, 李志超, 李朝光, 赵学峰, 胡峰. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [9] 上官丹骅, 邓力, 张宝印, 姬志成, 李刚. 非定常输运问题适应于消息传递并行编程环境的香农熵计算方法. 物理学报, 2016, 65(14): 142801. doi: 10.7498/aps.65.142801
    [10] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [11] 张鹏飞, 苏兆锋, 孙剑锋, 杨海亮, 李永东, 高屹, 孙江, 王洪广, 尹佳辉, 梁天学, 孙凤举, 王志国. 阳极杆箍缩二极管产生X射线能谱的模拟计算. 物理学报, 2011, 60(10): 100204. doi: 10.7498/aps.60.100204
    [12] 上官丹骅, 姬志成, 邓力, 李瑞, 李刚, 付元光. 蒙特卡罗临界计算全局计数问题新策略研究. 物理学报, 2019, 68(12): 122801. doi: 10.7498/aps.68.20182276
    [13] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [14] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [15] 上官丹骅, 邓力, 李刚, 张宝印, 马彦, 付元光, 李瑞, 胡小利. 蒙特卡罗临界计算全局计数效率新算法研究. 物理学报, 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [16] 李鹏, 许州, 黎明, 杨兴繁. 金刚石薄膜中二次电子输运的蒙特卡罗模拟. 物理学报, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [17] 上官丹骅, 李刚, 邓力, 张宝印, 李瑞, 付元光. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进. 物理学报, 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [18] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [19] 丛东亮, 许朋, 王叶兵, 常宏. 锶热原子束二维准直的动力学过程的蒙特卡罗模拟及实验研究. 物理学报, 2013, 62(15): 153702. doi: 10.7498/aps.62.153702
    [20] 陶应龙, 范如玉, 王建国, 牛胜利, 朱金辉. 高空核爆炸瞬发辐射电离效应的数值模拟. 物理学报, 2010, 59(8): 5914-5920. doi: 10.7498/aps.59.5914
  • 引用本文:
    Citation:
计量
  • 文章访问数:  512
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-17
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-20

相关变量随机数序列产生方法

  • 1. 华北电力大学核科学与工程学院, 北京 102206
  • 通信作者: 马续波, maxb@ncepu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11390383)和中央高校基本科研业务费(批准号:2015ZZD12)资助的课题.

摘要: 当采用蒙特卡罗方法对很多问题进行研究时,有时需要对多维相关随机变量进行抽样.之前的研究表明:在协方差矩阵满足正定条件时,可以采用Cholesky分解方法产生多维相关随机变量.本文首先对产生多维相关随机变量的理论公式进行了推导,发现采用Cholesky分解并不是产生多维相关随机变量的唯一方法,其他的矩阵分解方法只要能满足协方差矩阵的分解条件,同样可以用来产生多维相关随机变量.同时给出了采用协方差矩阵、相对协方差矩阵和相关系数矩阵产生多维随机变量的公式,以方便以后使用.在此基础上,利用一个简单测试题和Jacobi矩阵分解方法对上述理论进行了验证.通过对大亚湾中微子能谱进行抽样分析,Jacobi矩阵分解和Cholesky矩阵分解结果一致.针对核工程中的不确定性分析常用的238U辐射俘获截面协方差矩阵进行分解时,由于协方差矩阵的矩阵本征值有负值,导致很多矩阵分解方法无法使用,在引入置零修正以后发现,与Cholesky对角线置零修正相比,Jacobi负本征值置零修正的误差更小.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回