搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯在Al2O3(0001)表面生长的模拟研究

李锦锦 李多生 洪跃 邹伟 何俊杰

石墨烯在Al2O3(0001)表面生长的模拟研究

李锦锦, 李多生, 洪跃, 邹伟, 何俊杰
PDF
导出引用
  • 基于密度泛函理论的广义梯度近似法,对用化学气相沉积法在蓝宝石(-Al2O3)(0001)表面上生长石墨烯进行理论研究.研究结果表明:CH4在-Al2O3(0001)表面上的分解是吸热过程,由CH4完全分解出C需要较高能量及反应能垒,这些因素不利于C在衬底表面的存在.在-Al2O3(0001)表面,石墨烯形核的活跃因子并不是通常认为的C原子,而是CH基团.通过CH基团在-Al2O3(0001)表面上的迁移聚集首先形成能量较低的(CH)x结构.模拟研究(CH)x对揭示后续石墨烯的形核生长机理具有重要意义.
      通信作者: 李多生, duosheng.li@nchu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51562027)和江苏省精密与微细制造技术重点实验室基金(批准号:JKL2015001)资助的课题.
    [1]

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 146201 (in Chinese) [唐士惠, 操秀霞, 何林, 祝文军 2016 物理学报 65 146201]

    [2]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S 2014 Science 344 177

    [3]

    You F, Ji L, Xie Q L, Wang Z, Yue H W, Zhao X J, Fang L, Yan S L 2010 Acta Phys. Sin. 59 5035 (in Chinese) [游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林 2010 物理学报 59 5035]

    [4]

    Wang X, Zhi L G, Mullen K 2008 Nano Lett. 8 323

    [5]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845

    [6]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [7]

    Zheng H W 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郑海务 2006 博士毕业论文 (合肥: 中国科学技术大学)]

    [8]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [9]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [10]

    Obraztsov A N 2009 Nat. Nanotech. 4 212

    [11]

    Hofmann S, Csanyi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 036101

    [12]

    Bhaviripudi S, Jia X T, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [13]

    Riikonen S, Krasheninnikov A V, Halonen L, Nieminen R M 2012 J. Phys. Chem. C. 116 5802

    [14]

    Smith J R, Hong T, Smith J R, Srolovitz D J 1995 Acta Metall. Mater. 43 2721

    [15]

    Jiang Z, Pan Q, Li M, Yan T, Fang T 2014 Appl. Surf. Sci. 292 494

    [16]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Fischer T H, Almlof J 1992 J. Phys. Chem. B 96 9768

    [20]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225

    [21]

    Finger L W, Hazen R M 1978 Appl. Phys. 49 5823

    [22]

    Baxter R, Reinhardt P, Lpez N, Illas F 2000 Surf. Sci. 445 448

    [23]

    Wander A, Searle B, Harrison N M 2000 Surf. Sci. 458 25

    [24]

    Carrasco J, Gomes J R B, Illas F 2004 Phys. Rev. B 69 064116

    [25]

    Rohmann C, Metson J B, Idriss H 2011 Surf. Sci. 605 1694

    [26]

    Chiang H N, Nachimuthu S, Cheng Y C, Damayanti N P, Jiang N P 2016 Surf. Sci. 363 636

    [27]

    Guenard P, Renaud G, Barbier A, Gautiersoyer M 1998 Surf. Rev. Lett. 5 321

    [28]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Science 282 265

    [29]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [30]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 071101

    [31]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [32]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013 J. Am. Chem. Soc. 135 8409

    [33]

    Zhang C J, Hu P 2002 J. Phys. Chem. 116 322

    [34]

    Ciobca I M, Frechard F, van Santen R A, Kleyn A W, Hafner J 2000 J. Phys. Chem. B 104 3364

    [35]

    Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nrskov J K 2000 J. Catal. 189 16

    [36]

    Xu J, Saeys M 2008 J. Phys. Chem. C 112 9679

    [37]

    Gao M, Zhang Y F, Huang L, Pan Y, Wang Y, Ding F, Lin Y, Du S X, Gao H J 2016 Appl. Phys. Lett. 109 131604

    [38]

    Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D 2010 Nat. Chem. 3 61

  • [1]

    Tang S H, Cao X X, He L, Zhu W J 2016 Acta Phys. Sin. 65 146201 (in Chinese) [唐士惠, 操秀霞, 何林, 祝文军 2016 物理学报 65 146201]

    [2]

    Stojchevska L, Vaskivskyi I, Mertelj T, Kusar P, Svetin D, Brazovskii S 2014 Science 344 177

    [3]

    You F, Ji L, Xie Q L, Wang Z, Yue H W, Zhao X J, Fang L, Yan S L 2010 Acta Phys. Sin. 59 5035 (in Chinese) [游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林 2010 物理学报 59 5035]

    [4]

    Wang X, Zhi L G, Mullen K 2008 Nano Lett. 8 323

    [5]

    Simon P, Gogotsi Y 2008 Nat. Mater. 7 845

    [6]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [7]

    Zheng H W 2006 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郑海务 2006 博士毕业论文 (合肥: 中国科学技术大学)]

    [8]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [9]

    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [10]

    Obraztsov A N 2009 Nat. Nanotech. 4 212

    [11]

    Hofmann S, Csanyi G, Ferrari A C, Payne M C, Robertson J 2005 Phys. Rev. Lett. 95 036101

    [12]

    Bhaviripudi S, Jia X T, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [13]

    Riikonen S, Krasheninnikov A V, Halonen L, Nieminen R M 2012 J. Phys. Chem. C. 116 5802

    [14]

    Smith J R, Hong T, Smith J R, Srolovitz D J 1995 Acta Metall. Mater. 43 2721

    [15]

    Jiang Z, Pan Q, Li M, Yan T, Fang T 2014 Appl. Surf. Sci. 292 494

    [16]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [18]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [19]

    Fischer T H, Almlof J 1992 J. Phys. Chem. B 96 9768

    [20]

    Halgren T A, Lipscomb W N 1977 Chem. Phys. Lett. 49 225

    [21]

    Finger L W, Hazen R M 1978 Appl. Phys. 49 5823

    [22]

    Baxter R, Reinhardt P, Lpez N, Illas F 2000 Surf. Sci. 445 448

    [23]

    Wander A, Searle B, Harrison N M 2000 Surf. Sci. 458 25

    [24]

    Carrasco J, Gomes J R B, Illas F 2004 Phys. Rev. B 69 064116

    [25]

    Rohmann C, Metson J B, Idriss H 2011 Surf. Sci. 605 1694

    [26]

    Chiang H N, Nachimuthu S, Cheng Y C, Damayanti N P, Jiang N P 2016 Surf. Sci. 363 636

    [27]

    Guenard P, Renaud G, Barbier A, Gautiersoyer M 1998 Surf. Rev. Lett. 5 321

    [28]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Science 282 265

    [29]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268

    [30]

    Wu P, Zhang W, Li Z, Yang J, Hou J G 2010 J. Chem. Phys. 133 071101

    [31]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101

    [32]

    Niu T, Zhou M, Zhang J, Feng Y, Chen W 2013 J. Am. Chem. Soc. 135 8409

    [33]

    Zhang C J, Hu P 2002 J. Phys. Chem. 116 322

    [34]

    Ciobca I M, Frechard F, van Santen R A, Kleyn A W, Hafner J 2000 J. Phys. Chem. B 104 3364

    [35]

    Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nrskov J K 2000 J. Catal. 189 16

    [36]

    Xu J, Saeys M 2008 J. Phys. Chem. C 112 9679

    [37]

    Gao M, Zhang Y F, Huang L, Pan Y, Wang Y, Ding F, Lin Y, Du S X, Gao H J 2016 Appl. Phys. Lett. 109 131604

    [38]

    Treier M, Pignedoli C A, Laino T, Rieger R, Mullen K, Passerone D 2010 Nat. Chem. 3 61

  • [1] 邓辉球, 胡望宇, 曾振华, 李微雪. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [2] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [3] 马 军, 陈玉红, 张材荣. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [4] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究. 物理学报, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [5] 康 龙, 罗永春, 张材荣, 元丽华, 李延龙, 陈玉红. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [6] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [7] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究. 物理学报, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [8] 陈宣, 袁勇波, 邓开明, 肖传云, 陆瑞锋, 阚二军. MnxSny(x=2,3,4; y=18,24,30)团簇几何结构的密度泛函研究. 物理学报, 2012, 61(8): 083601. doi: 10.7498/aps.61.083601
    [9] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [10] 滕波涛, 蒋仕宇, 杨培芳, 胡娟梅, 吴锋民. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [11] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究. 物理学报, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
    [12] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [13] 康 龙, 罗永春, 张材荣, 马 军, 陈玉红. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [14] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [15] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [16] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [17] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究. 物理学报, 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [18] 栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡. 锑烯吸附金属Li原子的密度泛函研究. 物理学报, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [19] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [20] 郭云东, 王红艳, 李喜波, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
  • 引用本文:
    Citation:
计量
  • 文章访问数:  709
  • PDF下载量:  149
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-23
  • 修回日期:  2017-07-25
  • 刊出日期:  2017-11-05

石墨烯在Al2O3(0001)表面生长的模拟研究

  • 1. 南昌航空大学材料科学与工程学院, 南昌 330063
  • 通信作者: 李多生, duosheng.li@nchu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51562027)和江苏省精密与微细制造技术重点实验室基金(批准号:JKL2015001)资助的课题.

摘要: 基于密度泛函理论的广义梯度近似法,对用化学气相沉积法在蓝宝石(-Al2O3)(0001)表面上生长石墨烯进行理论研究.研究结果表明:CH4在-Al2O3(0001)表面上的分解是吸热过程,由CH4完全分解出C需要较高能量及反应能垒,这些因素不利于C在衬底表面的存在.在-Al2O3(0001)表面,石墨烯形核的活跃因子并不是通常认为的C原子,而是CH基团.通过CH基团在-Al2O3(0001)表面上的迁移聚集首先形成能量较低的(CH)x结构.模拟研究(CH)x对揭示后续石墨烯的形核生长机理具有重要意义.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回