搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Er2O3薄膜型热辐射体的制备与性能研究

刘士彦 姚博 谭永胜 徐海涛 冀婷 方泽波

Er2O3薄膜型热辐射体的制备与性能研究

刘士彦, 姚博, 谭永胜, 徐海涛, 冀婷, 方泽波
PDF
导出引用
  • 调制辐射体的可见和近红外区域的辐射光谱与光伏电池吸收光谱的匹配是开发高性能热光伏电池技术的关键.采用电子束蒸发在单晶硅衬底上制备金属Er薄膜并进行后氧化处理制备Er2O3薄膜型辐射体.X射线衍射结果表明薄膜结晶良好,且Si基底对Er2O3薄膜的晶体结构没有显著影响.X射线光电子能谱拟合结果表明薄膜中Er元素和O元素符合Er2O3的化学计量比.高温近红外光谱测试结果表明,样品在1550 nm左右出现了明显的Er3+离子的特征辐射峰,这与GaSb光电池的吸收光谱相匹配.
      通信作者: 方泽波, csfzb@usx.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61405118,61504082)、浙江省自然科学基金(批准号:LY15A040001,LQ16F040001)、山西省自然科学基金(批准号:201601D021051)和绍兴市科技计划项目(批准号:2015B70009)资助的课题.
    [1]

    Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 57302

    [2]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805]

    [3]

    Peng H L, Zhang W, Sun L J, Ma S D, Shi Y, Liang H W, Zhang Y J, Zheng W H 2014 Acta Phys. Sin. 63 178801 (in Chinese) [彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华 2014 物理学报 63 178801]

    [4]

    Seyf H R, Henry A 2016 Energ. Environ. Sci. 9 2654

    [5]

    Daneshvar H, Prinja R, Kherani N P 2015 Appl. Energ. 159 560

    [6]

    Karalis A, Joannopoulos J D 2015 Appl. Phys. Lett. 107 141108

    [7]

    Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1

    [8]

    Wang H C, Wen L, Song S C, Hu X, Xu G Q 2015 Photon. Res. 3 329

    [9]

    Zhou Z G, Yehia O, Bermel P 2016 J. Nanophoton. 10 016014

    [10]

    Diso D, Licciulli A, Bianco A, Lomascolo M, Leo G, Mazzer M, Tundo S, Torsello G, Maffezzoli A 2003 Mater. Sci. Eng. B 98 144

    [11]

    Guazzoni G E 1972 Appl. Spectrosc. 26 60

    [12]

    Fraas L M, Girard G R, Avery J E, Arau B A, Sundaram V S 1989 J. Appl. Phys. 66 3866

    [13]

    Licciulli A, Maffezzoli A, Diso D, Tundo S, Rella M, Torsello G, Mazzer M 2003 J. Sol-Gel Sci. Technol. 26 1119

    [14]

    Tobler W J, Durisch W 2008 Appl. Energ. 85 483

    [15]

    Chubb D L, Good B S, Chen Z 1997 AIP Conf. Proc. 401 293

    [16]

    Chubb D L, Lowe R A 1993 J. Appl. Phys. 74 5687

    [17]

    Narayanaswamy A, Canetta C 2014 Appl. Phys. Lett. 104 183107

    [18]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [19]

    Mikhelashvili V, Eisenstein G, Edelmann F 2002 Appl. Phys. Lett. 80 2156

    [20]

    Pam T M, Chen C L, Yeh W W, Hou S J 2006 Appl. Phys. Lett. 89 222912

    [21]

    Dakhel A A 2006 Mater. Chem. Phys. 100 366

    [22]

    Chen S, Zhu Y Y, Wu R, Wu Y Q, Fan Y L, Jiang Z M 2007 J. Appl. Phys. 101 064106

    [23]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G, Malandrino G, Fragalà I L, Armelao L, Barreca D, Tondello E 2008 J. Electrochem. Soc. 155 44

    [24]

    Pan T M, Shu W H, Hong J L 2007 Appl. Phys. Lett. 90 222906

  • [1]

    Xiong C, Yao R H, Geng K W 2011 Chin. Phys. B 20 57302

    [2]

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805 (in Chinese) [姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805]

    [3]

    Peng H L, Zhang W, Sun L J, Ma S D, Shi Y, Liang H W, Zhang Y J, Zheng W H 2014 Acta Phys. Sin. 63 178801 (in Chinese) [彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华 2014 物理学报 63 178801]

    [4]

    Seyf H R, Henry A 2016 Energ. Environ. Sci. 9 2654

    [5]

    Daneshvar H, Prinja R, Kherani N P 2015 Appl. Energ. 159 560

    [6]

    Karalis A, Joannopoulos J D 2015 Appl. Phys. Lett. 107 141108

    [7]

    Zhou Z G, Sakr E, Sun Y B, Bermel P 2016 Nanophotonics 5 1

    [8]

    Wang H C, Wen L, Song S C, Hu X, Xu G Q 2015 Photon. Res. 3 329

    [9]

    Zhou Z G, Yehia O, Bermel P 2016 J. Nanophoton. 10 016014

    [10]

    Diso D, Licciulli A, Bianco A, Lomascolo M, Leo G, Mazzer M, Tundo S, Torsello G, Maffezzoli A 2003 Mater. Sci. Eng. B 98 144

    [11]

    Guazzoni G E 1972 Appl. Spectrosc. 26 60

    [12]

    Fraas L M, Girard G R, Avery J E, Arau B A, Sundaram V S 1989 J. Appl. Phys. 66 3866

    [13]

    Licciulli A, Maffezzoli A, Diso D, Tundo S, Rella M, Torsello G, Mazzer M 2003 J. Sol-Gel Sci. Technol. 26 1119

    [14]

    Tobler W J, Durisch W 2008 Appl. Energ. 85 483

    [15]

    Chubb D L, Good B S, Chen Z 1997 AIP Conf. Proc. 401 293

    [16]

    Chubb D L, Lowe R A 1993 J. Appl. Phys. 74 5687

    [17]

    Narayanaswamy A, Canetta C 2014 Appl. Phys. Lett. 104 183107

    [18]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [19]

    Mikhelashvili V, Eisenstein G, Edelmann F 2002 Appl. Phys. Lett. 80 2156

    [20]

    Pam T M, Chen C L, Yeh W W, Hou S J 2006 Appl. Phys. Lett. 89 222912

    [21]

    Dakhel A A 2006 Mater. Chem. Phys. 100 366

    [22]

    Chen S, Zhu Y Y, Wu R, Wu Y Q, Fan Y L, Jiang Z M 2007 J. Appl. Phys. 101 064106

    [23]

    Losurdo M, Giangregorio M M, Capezzuto P, Bruno G, Malandrino G, Fragalà I L, Armelao L, Barreca D, Tondello E 2008 J. Electrochem. Soc. 155 44

    [24]

    Pan T M, Shu W H, Hong J L 2007 Appl. Phys. Lett. 90 222906

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1447
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 修回日期:  2017-09-08
  • 刊出日期:  2017-12-05

Er2O3薄膜型热辐射体的制备与性能研究

  • 1. 绍兴文理学院物理系, 绍兴 312000;
  • 2. 太原理工大学物理与光电工程学院, 太原 030024
  • 通信作者: 方泽波, csfzb@usx.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61405118,61504082)、浙江省自然科学基金(批准号:LY15A040001,LQ16F040001)、山西省自然科学基金(批准号:201601D021051)和绍兴市科技计划项目(批准号:2015B70009)资助的课题.

摘要: 调制辐射体的可见和近红外区域的辐射光谱与光伏电池吸收光谱的匹配是开发高性能热光伏电池技术的关键.采用电子束蒸发在单晶硅衬底上制备金属Er薄膜并进行后氧化处理制备Er2O3薄膜型辐射体.X射线衍射结果表明薄膜结晶良好,且Si基底对Er2O3薄膜的晶体结构没有显著影响.X射线光电子能谱拟合结果表明薄膜中Er元素和O元素符合Er2O3的化学计量比.高温近红外光谱测试结果表明,样品在1550 nm左右出现了明显的Er3+离子的特征辐射峰,这与GaSb光电池的吸收光谱相匹配.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回