搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单光子激光测距的漂移误差理论模型及补偿方法

黄科 李松 马跃 田昕 周辉 张智宇

引用本文:
Citation:

单光子激光测距的漂移误差理论模型及补偿方法

黄科, 李松, 马跃, 田昕, 周辉, 张智宇

Theoretical model and correction method of range walk error for single-photon laser ranging

Huang Ke, Li Song, Ma Yue, Tian Xin, Zhou Hui, Zhang Zhi-Yu
PDF
导出引用
  • 单光子激光测距系统采用高灵敏度的单光子探测器作为接收器件,更易实现高密度、高覆盖率的目标采样,是未来激光测距系统的发展方向.漂移误差作为限制单光子激光测距精度提高的瓶颈问题,其主要由平均回波信号光子数的变化引起.以激光雷达方程、单光子探测器的概率与统计理论为基础,建立了漂移误差的理论模型,给出了漂移误差与平均信号光子数、均方根脉宽等系统参数之间的理论关系式.同时,结合单光子探测概率模型给出了一种漂移误差的修正方法,并搭建实验系统对漂移误差模型和修正方法进行了验证.在回波信号均方根脉宽为3.2 ns、平均回波信号光子数为0.03到4.3个情况下,未经修正的漂移误差最大达到46 cm,经修正后的均方根误差为1.16 cm,平均绝对误差为0.99 cm,达到1 cm量级,漂移误差对测距精度的影响基本可以忽略.该方法可以解决漂移误差制约单光子激光测距精度提高的瓶颈问题.
    Single-photon laser ranging is a new generation of lidar which represents the future lidar development trend.It uses the single photon detector as the receiving device.Due to the fact that single-photon detector possesses the ultra-high sensitivity,the single-photon laser ranging is much easier to achieve the high density as well as the high coverage target sampling.However,the existence of the range work error in single-photon laser ranging,resulting from the fluctuation in the number of signal photoelectrons restricts the improvement of the ranging accuracy.In this paper,the range walk error model based on the lidar equation and the statistical property of single-photon detector is established.Then the relation between the range walk error and the number of signal photoelectrons is also derived.The range walk error of single-photon laser ranging is predicted and the corresponding compensation for the original result is obtained,with the derived function and the detection probability model of single-photon laser ranging.The experiment for its proof is also carried out.In the experiment,the number of signal photoelectrons is changed by the different attenuators for the same target and at the same distance.When the attenuator is changed,the pulse width of echo signal changes very little (about 3.2 ns).However,the average number of signal photoelectrons varies between 0.03 counts and 4.3 counts.So the range walk error,resulting from the fluctuation in the number of signal photoelectrons cannot be ignored.For example, when using an attenuation of 1/10 pass rate,the average number of signal photoelectrons is about 4.3 counts and the range walk error is almost 46 cm,which is the main factor of the range error.The reduction of the range walk error is achieved by applying the correction of the range walk error in this paper.After correction,the standard deviation of the range walk error decreases significantly from 15.17 cm to 1.16 cm.The mean absolute error is also reduced from 11.56 cm to 0.99 cm.Generally,the range walk error has an unnegligible influence on the ranging accuracy.The experimental result confirms that the theoretical model is accurate.It also shows that the bigger the number of the received signal photoelectrons,the greater the range walk error is,and the accuracy of single-photon laser ranging is improved by applying the technique proposed in this paper.Briefly,this paper presents the technical method of optimizing the design and evaluating the performance of single-photon laser ranging.
      通信作者: 李松, ls@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:41506210)、国家科技重大专项(批准号:42-Y20A11-9001-17/18)、中国博士后科学基金(批准号:2016M600612)和卫星测绘技术与应用国家测绘地理信息局重点实验室(批准号:KLSMTA-201701)资助的课题.
      Corresponding author: Li Song, ls@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41506210), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 42-Y20A11-9001-17/18), the China Postdoctoral Science Foundation (Grant No. 2016M600612), and the Key Laboratory of Satellite Mapping Technology and Application, National Administrator of Surveying, Mapping and Geoinformation, China (Grant No. KLSMTA-201701).
    [1]

    Iqbal I A, Dash J, Ullah S, Ahmad G 2013 Int. J. Appl. Earth Obs. 23 109

    [2]

    Abdullah Q A 2016 Photogramm. Eng. Rem. S. 82 307

    [3]

    Brown M E, Arias S D, Neumann T, Jasinski M F, Posey P, Babonis G 2016 IEEE Geosci. Remote S. 4 24

    [4]

    Yu A W, Krainak M A, Harding D J, et al. 2013 Proc. SPIE 8599 85990P

    [5]

    Gatt P, Johnson S, Nichols T L 2007 Proc. SPIE 6550 65500I

    [6]

    Apakwok R, Markus T, Morison J, Palm S P, Neumann T A, Brunt K M 2014 J. Atmos. Ocean. Technol. 31 1151

    [7]

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese) [张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 物理学报 65 188501]

    [8]

    Lai J, Jiang H, We Y, Wang C, Li Z 2013 Optik 124 5202

    [9]

    Luo H, Yuan X, Zeng Y 2013 Opt. Express 21 18983

    [10]

    Xu L, Zhang Y, Zhang Y, Yang C, Yang X, Zhao Y 2016 Appl. Opt. 55 1683

    [11]

    Oh M S, Kong H J, Kim T H, Hong K H, Kim B W 2010 Opt. Commun. 283 304

    [12]

    He W, Sima B, Chen Y, Dai H, Chen Q, Gu G 2013 Opt. Commun. 308 211

    [13]

    Gardner C S 1992 IEEE Trans. Geosci. Remote Sens. 30 1061

    [14]

    Kim S, Lee I, Kwon Y J 2013 Sensors 13 8461

    [15]

    Johnson S, Gatt P, Nichols T L 2003 Proc. SPIE 2003 5086

    [16]

    Williams G M, Huntington A S 2006 Proc. SPIE 6220 622008

    [17]

    Degnan J J 2002 J. Geodyn. 34 503

    [18]

    Fouche D G 2003 Appl. Opt. 42 5388

    [19]

    Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, Schutz B E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260

    [20]

    Johnson S E, Nichols T L, Gat P, Klausutis T J 2004 Sensors 5412 72

    [21]

    Huang K, Li S, Ma Y, Zhou H, Yi H, Si G Y 2016 Chin. J. Lasers 11 1110001 (in Chinese) [黄科, 李松, 马跃, 周辉, 易洪, 史光远 2016 中国激光 11 1110001]

    [22]

    Sithole G 2001 Int. Arch. Photogramm. Remote Sens. 34 203

    [23]

    Zhang J S 2014 Ph. D. Dissertation (Rochester:Rochester Institute of Technology)

  • [1]

    Iqbal I A, Dash J, Ullah S, Ahmad G 2013 Int. J. Appl. Earth Obs. 23 109

    [2]

    Abdullah Q A 2016 Photogramm. Eng. Rem. S. 82 307

    [3]

    Brown M E, Arias S D, Neumann T, Jasinski M F, Posey P, Babonis G 2016 IEEE Geosci. Remote S. 4 24

    [4]

    Yu A W, Krainak M A, Harding D J, et al. 2013 Proc. SPIE 8599 85990P

    [5]

    Gatt P, Johnson S, Nichols T L 2007 Proc. SPIE 6550 65500I

    [6]

    Apakwok R, Markus T, Morison J, Palm S P, Neumann T A, Brunt K M 2014 J. Atmos. Ocean. Technol. 31 1151

    [7]

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese) [张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 物理学报 65 188501]

    [8]

    Lai J, Jiang H, We Y, Wang C, Li Z 2013 Optik 124 5202

    [9]

    Luo H, Yuan X, Zeng Y 2013 Opt. Express 21 18983

    [10]

    Xu L, Zhang Y, Zhang Y, Yang C, Yang X, Zhao Y 2016 Appl. Opt. 55 1683

    [11]

    Oh M S, Kong H J, Kim T H, Hong K H, Kim B W 2010 Opt. Commun. 283 304

    [12]

    He W, Sima B, Chen Y, Dai H, Chen Q, Gu G 2013 Opt. Commun. 308 211

    [13]

    Gardner C S 1992 IEEE Trans. Geosci. Remote Sens. 30 1061

    [14]

    Kim S, Lee I, Kwon Y J 2013 Sensors 13 8461

    [15]

    Johnson S, Gatt P, Nichols T L 2003 Proc. SPIE 2003 5086

    [16]

    Williams G M, Huntington A S 2006 Proc. SPIE 6220 622008

    [17]

    Degnan J J 2002 J. Geodyn. 34 503

    [18]

    Fouche D G 2003 Appl. Opt. 42 5388

    [19]

    Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, Schutz B E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260

    [20]

    Johnson S E, Nichols T L, Gat P, Klausutis T J 2004 Sensors 5412 72

    [21]

    Huang K, Li S, Ma Y, Zhou H, Yi H, Si G Y 2016 Chin. J. Lasers 11 1110001 (in Chinese) [黄科, 李松, 马跃, 周辉, 易洪, 史光远 2016 中国激光 11 1110001]

    [22]

    Sithole G 2001 Int. Arch. Photogramm. Remote Sens. 34 203

    [23]

    Zhang J S 2014 Ph. D. Dissertation (Rochester:Rochester Institute of Technology)

  • [1] 王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔. 基于二次强度调制的激光测距系统. 物理学报, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [2] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信. 物理学报, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [3] 赵宁, 江英华, 周贤韬. 基于单光子的高效量子安全直接通信方案. 物理学报, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [4] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性的安全量子通讯. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210907
    [5] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [6] 魏连锁, 李华, 吴迪, 郭媛. 基于BP神经网络模型时钟同步误差补偿算法. 物理学报, 2021, 70(11): 114203. doi: 10.7498/aps.70.20201641
    [7] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [8] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [9] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [10] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系. 物理学报, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [11] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [12] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [13] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现. 物理学报, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [14] 于振涛, 吕俊伟, 毕波, 周静. 四面体磁梯度张量系统的载体磁干扰补偿方法. 物理学报, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [15] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [16] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制. 物理学报, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [17] 韩敏, 许美玲. 一种基于误差补偿的多元混沌时间序列混合预测模型. 物理学报, 2013, 62(12): 120510. doi: 10.7498/aps.62.120510
    [18] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [19] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [20] 权东晓, 裴昌幸, 刘丹, 赵楠. 基于单光子的单向量子安全通信协议. 物理学报, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
计量
  • 文章访问数:  6722
  • PDF下载量:  332
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-13
  • 修回日期:  2017-12-06
  • 刊出日期:  2019-03-20

/

返回文章
返回