搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引力彩虹时空中Kerr黑洞的熵谱和面积谱

刘成周 邓岳君 骆叶成

引力彩虹时空中Kerr黑洞的熵谱和面积谱

刘成周, 邓岳君, 骆叶成
PDF
导出引用
  • 利用黑洞的绝热不变性,研究了引力彩虹时空中Kerr黑洞的熵谱和面积谱.首先,在引力彩虹时空背景下,计算了Kerr黑洞的绝热不变作用量,并将其与玻尔-索末菲量子化条件相结合,给出了黑洞的熵谱.得到的熵谱没有引力彩虹时空本身具有的粒子能量依赖性,且是与经典Kerr黑洞中原始贝肯斯坦熵谱相同的等间距熵谱.然后,根据黑洞热力学第一定律和黑洞熵谱,给出了与原始贝肯斯坦谱不同的面积谱.该面积谱是非等间距的,而且有对黑洞面积的依赖性,但不依赖于探测粒子的能量.面积谱表明,随着黑洞面积的减少,面积间隔逐步变小;当黑洞达到普朗克尺度时,面积量子可降为零.这表示黑洞面积不再减少,黑洞出现辐射剩余.而在忽略色散关系的修正效应或在大黑洞极限下,面积谱的修正项可以忽略,引力彩虹Kerr黑洞面积谱可以回归到原始贝肯斯坦谱.此外,对引力彩虹时空Kerr黑洞的熵进行了讨论,得到了带有面积倒数修正项的黑洞熵,分析了黑洞熵的量子修正与面积谱量子修正的一致性.
      通信作者: 刘成周, czlbj20@aliyun.com
    • 基金项目: 浙江省自然科学基金(批准号:LY14A030001)和国家自然科学基金(批准号:11373020)资助的课题.
    [1]

    Bekenstein J D 1972 Lett. Nuovo. Cim. 4 737

    [2]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [3]

    Bekenstein J D 1974 Lett. Nuovo Cim. 11 467

    [4]

    Bekenstein J D 1998 arXiv:gr-qc/9808028

    [5]

    Kunstatter G 2003 Phys. Rev. Lett. 90 161301

    [6]

    Nollert H P 1999 Class. Quant. Grav. 16 R159

    [7]

    Hod S 1998 Phys. Rev. Lett. 81 4293

    [8]

    Hod S 1998 Phys. Rev. D 59 024014

    [9]

    Maggiore M 2008 Phys. Rev. Lett. 100 141301

    [10]

    Wang B, Lin C Y, Molina C 2004 Phys. Rev. D 70 064025

    [11]

    Medved A J M 2008 Class. Quantum Grav. 25 205014

    [12]

    Vagenas E C 2008 JHEP 2008 073

    [13]

    Ropotenko K 2010 Phys. Rev. D 82 044037

    [14]

    Kothawala D, Padmanabhan T, Sarkar S 2008 Phys. Rev. D 78 104018

    [15]

    Wei S W, Li R, Liu Y X, Ren J R 2009 JHEP 2009 076

    [16]

    Li W B, Xu L X, Lu J B 2009 Phys. Lett. B 676 177

    [17]

    Jing J L, Ding C K 2008 Chin. Phys. Lett. 25 858

    [18]

    Pan Q Y, Jing J L 2005 Chin. Phys. B 14 268

    [19]

    Chen J H, Wang Y J 2010 Chin. Phys. B 19 060401

    [20]

    Wei S W, Liu Y X, Yang K, Zhong Y 2010 Phys. Rev. D 81 104042

    [21]

    Liu C Z 2012 Eur. Phys. J. C 72 2009

    [22]

    Barvinsky A, Das S, Kunstatter G 2001 Class. Quant. Grav. 18 4845

    [23]

    Barvinsky A, Das S, Kunstatter G 2002 Found. Phys. 32 1851

    [24]

    Ropotenko K 2009 Phys. Rev. D 80 044022

    [25]

    Kwon Y, Nam S 2010 Class. Quant. Grav. 27 125007

    [26]

    Louko J, Makela J 1996 Phys. Rev. D 54 4982

    [27]

    Majhi B R, Vagenas E C 2011 Phys. Lett. B 701 623

    [28]

    Liu C Z 2012 Chin. Phys. B 21 070401

    [29]

    Li L 2012 Int. J. Ther. Phys. 51 1924

    [30]

    Liu C Z 2012 Mod. Phys. Lett. A 27 1250139

    [31]

    Zeng X X, Liu W B 2012 Eur. Phys. J. C 72 1987

    [32]

    Qi D J 2014 Astrophys. Space. Sci. 349 33

    [33]

    Garay L J 1995 Int. J. Mod. Phys. A 10 145

    [34]

    Gross D J, Mende P F 1988 Nucl. Phys. B 303 407

    [35]

    Witten E 1997 Phys. Today 49 24

    [36]

    Smolin L 2004 arXiv:hep-th.0408048

    [37]

    Ali A F, Faizal M, Khalil M M 2014 JHEP 2014 159

    [38]

    Ali A F, Faizal M, Khalil M M 2015 Phys. Lett. B 743 295

    [39]

    Gangopadhyay S, Dutta A, Saha A 2014 Gen. Rel. Grav. 46 1661

    [40]

    Dutta A, Gangopadhyay S 2014 Gen. Rel. Grav. 46 1747

    [41]

    Gangopadhyay S, Dutta A, Faizal M 2015 Euro. Phys. Lett. 112 20006

    [42]

    Dutta A, Gangopadhyay S 2016 Int. J. Theo. Phys. 55 2746

    [43]

    Ma H, Li J 2017 Chin. Phys. B 26 60401

    [44]

    Chen N S, Zhang J Y 2015 Chin. Phys. B 24 020401

    [45]

    Ibungochouba S T 2015 Chin. Phys. B 24 70401

    [46]

    Ye B B, Chen J H, Wang Y J 2017 Chin. Phys. B 26 90202

    [47]

    Amelino-Camelia G 2002 Int. J. Mod. Phys. D 11 35

    [48]

    Amelino-Camelia G 2001 Phys. Lett. B 510 255

    [49]

    Kowalski-Glikman J 2001 Phys. Lett. A 286 391

    [50]

    Magueijo J, Smolin L 2002 Phys. Rev. Lett. 88 190403

    [51]

    Magueijo J, Smolin L 2003 Phys. Rev. D 67 044017

    [52]

    Kimberly D, Magueijo J, Medeiros J 2004 Phys. Rev. D 70 084007

    [53]

    Magueijo J, Smolin L 2004 Class. Quant. Grav. 21 1725

    [54]

    Heuson C 2006 arXiv:gr-qc/0606124

    [55]

    Amelino-Camalia G, Ellis N E, Mavromatos D V 1997 Int. J. Mod. Phys. A 12 607

    [56]

    Amelino-Camalia G 2013 Living. Rev. Rel. 16 5

    [57]

    Altamirano N, Kubiznak D, Mann R B, Sherkatghanad Z 2014 Galaxies 2 89

    [58]

    Ling Y, Li X, Hu B 2007 Mod. Phys. Lett. A 22 2749

    [59]

    Ling Y, Hu B, Li X 2006 Phys. Rev. D 73 087702

    [60]

    Liu C Z, Zhu J Y 2008 Gen. Relat. Gravit. 40 1899

    [61]

    Zhang J Y, Zhao Z 2005 Mod. Phys. Lett. A 20 1673

    [62]

    Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003

    [63]

    Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752

    [64]

    Adler R J, Chen P, Santiago D I 2001 Gen. Rel. Grav. 33 2101

    [65]

    Amelino-Camelia G, Arzano M, Procaccini A 2004 Phys. Rev. D 70 107501

    [66]

    Ali A F, Mohammed M F, Khalil M 2015 Nucl. Phys. B 894 341

    [67]

    Ali A F 2014 Phys. Rev. D 89 104040

    [68]

    Kaul R K, Majumder P 2000 Phys. Rev. Lett. 84 5255

    [69]

    Don N 2005 Page, New. J. Phys. 7 203

    [70]

    Jing J L, Yan M L 1999 Phys.Rev. D 60 084015

    [71]

    Carlip S 2000 Class. Quant. Grav. 17 4175

    [72]

    Jing J L, Yan M L 2000 Phys. Rev. D 63 024003

  • [1]

    Bekenstein J D 1972 Lett. Nuovo. Cim. 4 737

    [2]

    Bekenstein J D 1973 Phys. Rev. D 7 2333

    [3]

    Bekenstein J D 1974 Lett. Nuovo Cim. 11 467

    [4]

    Bekenstein J D 1998 arXiv:gr-qc/9808028

    [5]

    Kunstatter G 2003 Phys. Rev. Lett. 90 161301

    [6]

    Nollert H P 1999 Class. Quant. Grav. 16 R159

    [7]

    Hod S 1998 Phys. Rev. Lett. 81 4293

    [8]

    Hod S 1998 Phys. Rev. D 59 024014

    [9]

    Maggiore M 2008 Phys. Rev. Lett. 100 141301

    [10]

    Wang B, Lin C Y, Molina C 2004 Phys. Rev. D 70 064025

    [11]

    Medved A J M 2008 Class. Quantum Grav. 25 205014

    [12]

    Vagenas E C 2008 JHEP 2008 073

    [13]

    Ropotenko K 2010 Phys. Rev. D 82 044037

    [14]

    Kothawala D, Padmanabhan T, Sarkar S 2008 Phys. Rev. D 78 104018

    [15]

    Wei S W, Li R, Liu Y X, Ren J R 2009 JHEP 2009 076

    [16]

    Li W B, Xu L X, Lu J B 2009 Phys. Lett. B 676 177

    [17]

    Jing J L, Ding C K 2008 Chin. Phys. Lett. 25 858

    [18]

    Pan Q Y, Jing J L 2005 Chin. Phys. B 14 268

    [19]

    Chen J H, Wang Y J 2010 Chin. Phys. B 19 060401

    [20]

    Wei S W, Liu Y X, Yang K, Zhong Y 2010 Phys. Rev. D 81 104042

    [21]

    Liu C Z 2012 Eur. Phys. J. C 72 2009

    [22]

    Barvinsky A, Das S, Kunstatter G 2001 Class. Quant. Grav. 18 4845

    [23]

    Barvinsky A, Das S, Kunstatter G 2002 Found. Phys. 32 1851

    [24]

    Ropotenko K 2009 Phys. Rev. D 80 044022

    [25]

    Kwon Y, Nam S 2010 Class. Quant. Grav. 27 125007

    [26]

    Louko J, Makela J 1996 Phys. Rev. D 54 4982

    [27]

    Majhi B R, Vagenas E C 2011 Phys. Lett. B 701 623

    [28]

    Liu C Z 2012 Chin. Phys. B 21 070401

    [29]

    Li L 2012 Int. J. Ther. Phys. 51 1924

    [30]

    Liu C Z 2012 Mod. Phys. Lett. A 27 1250139

    [31]

    Zeng X X, Liu W B 2012 Eur. Phys. J. C 72 1987

    [32]

    Qi D J 2014 Astrophys. Space. Sci. 349 33

    [33]

    Garay L J 1995 Int. J. Mod. Phys. A 10 145

    [34]

    Gross D J, Mende P F 1988 Nucl. Phys. B 303 407

    [35]

    Witten E 1997 Phys. Today 49 24

    [36]

    Smolin L 2004 arXiv:hep-th.0408048

    [37]

    Ali A F, Faizal M, Khalil M M 2014 JHEP 2014 159

    [38]

    Ali A F, Faizal M, Khalil M M 2015 Phys. Lett. B 743 295

    [39]

    Gangopadhyay S, Dutta A, Saha A 2014 Gen. Rel. Grav. 46 1661

    [40]

    Dutta A, Gangopadhyay S 2014 Gen. Rel. Grav. 46 1747

    [41]

    Gangopadhyay S, Dutta A, Faizal M 2015 Euro. Phys. Lett. 112 20006

    [42]

    Dutta A, Gangopadhyay S 2016 Int. J. Theo. Phys. 55 2746

    [43]

    Ma H, Li J 2017 Chin. Phys. B 26 60401

    [44]

    Chen N S, Zhang J Y 2015 Chin. Phys. B 24 020401

    [45]

    Ibungochouba S T 2015 Chin. Phys. B 24 70401

    [46]

    Ye B B, Chen J H, Wang Y J 2017 Chin. Phys. B 26 90202

    [47]

    Amelino-Camelia G 2002 Int. J. Mod. Phys. D 11 35

    [48]

    Amelino-Camelia G 2001 Phys. Lett. B 510 255

    [49]

    Kowalski-Glikman J 2001 Phys. Lett. A 286 391

    [50]

    Magueijo J, Smolin L 2002 Phys. Rev. Lett. 88 190403

    [51]

    Magueijo J, Smolin L 2003 Phys. Rev. D 67 044017

    [52]

    Kimberly D, Magueijo J, Medeiros J 2004 Phys. Rev. D 70 084007

    [53]

    Magueijo J, Smolin L 2004 Class. Quant. Grav. 21 1725

    [54]

    Heuson C 2006 arXiv:gr-qc/0606124

    [55]

    Amelino-Camalia G, Ellis N E, Mavromatos D V 1997 Int. J. Mod. Phys. A 12 607

    [56]

    Amelino-Camalia G 2013 Living. Rev. Rel. 16 5

    [57]

    Altamirano N, Kubiznak D, Mann R B, Sherkatghanad Z 2014 Galaxies 2 89

    [58]

    Ling Y, Li X, Hu B 2007 Mod. Phys. Lett. A 22 2749

    [59]

    Ling Y, Hu B, Li X 2006 Phys. Rev. D 73 087702

    [60]

    Liu C Z, Zhu J Y 2008 Gen. Relat. Gravit. 40 1899

    [61]

    Zhang J Y, Zhao Z 2005 Mod. Phys. Lett. A 20 1673

    [62]

    Jiang Q Q, Wu S Q, Cai X 2006 Phys. Rev. D 73 064003

    [63]

    Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752

    [64]

    Adler R J, Chen P, Santiago D I 2001 Gen. Rel. Grav. 33 2101

    [65]

    Amelino-Camelia G, Arzano M, Procaccini A 2004 Phys. Rev. D 70 107501

    [66]

    Ali A F, Mohammed M F, Khalil M 2015 Nucl. Phys. B 894 341

    [67]

    Ali A F 2014 Phys. Rev. D 89 104040

    [68]

    Kaul R K, Majumder P 2000 Phys. Rev. Lett. 84 5255

    [69]

    Don N 2005 Page, New. J. Phys. 7 203

    [70]

    Jing J L, Yan M L 1999 Phys.Rev. D 60 084015

    [71]

    Carlip S 2000 Class. Quant. Grav. 17 4175

    [72]

    Jing J L, Yan M L 2000 Phys. Rev. D 63 024003

  • [1] 王悦悦, 杨 琴, 戴朝卿, 张解放. 考虑量子效应的Zakharov方程组的孤波解. 物理学报, 2006, 55(3): 1029-1034. doi: 10.7498/aps.55.1029
    [2] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型. 物理学报, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
    [3] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [4] 刘启能. 各向异性圆柱掺杂光子晶体的缺陷模及其量子效应. 物理学报, 2011, 60(1): 014217. doi: 10.7498/aps.60.014217
    [5] 刘 奎, 丁宏林, 张贤高, 余林蔚, 黄信凡, 陈坤基. 量子点浮置栅量子线沟道三栅结构单电子场效应管存储特性的数值模拟. 物理学报, 2008, 57(11): 7052-7056. doi: 10.7498/aps.57.7052
    [6] 丁建宁, 何泽军, 李锋, 袁宁一, 陈效双, 陆卫. 溶胶-凝胶制备ZnO-SiO2复合膜的量子效应和上转换发光. 物理学报, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [7] 张 磊, 钟维烈. 横场-伊辛模型中BaTiO3的铁电行为. 物理学报, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
    [8] 管习文, 熊庄, 周焕强. Fateev-Zamolodchikov量子自旋链的潜藏定域规范不变性. 物理学报, 1993, 42(2): 331-339. doi: 10.7498/aps.42.331
    [9] 王孝国, 贾春生, 蒋效卫, 杨秋波. 量子系统的能量本征值在超对称性、形状不变性框架下的计算. 物理学报, 1997, 46(1): 12-19. doi: 10.7498/aps.46.12
    [10] 张海燕, 许伯威. 用共形不变性和Lanczos方法研究具有次近邻相互作用的一维量子链. 物理学报, 1994, 43(6): 864-871. doi: 10.7498/aps.43.864
    [11] 楼智美. 哈密顿Ermakov系统的形式不变性. 物理学报, 2005, 54(5): 1969-1971. doi: 10.7498/aps.54.1969
    [12] 解加芳, 胡楚勒. Maggi方程的形式不变性与 Hojman守恒量. 物理学报, 2007, 56(9): 5045-5048. doi: 10.7498/aps.56.5045
    [13] 曾绍群, 徐海峰, 李骄阳, 刘贤德. 热波成像的线性平移不变性研究. 物理学报, 1997, 46(7): 1338-1343. doi: 10.7498/aps.46.1338
    [14] 刘成周, 余国祥, 谢志堃. 用圈量子引力解除Schwarichild-de Sitter黑洞的时空奇点. 物理学报, 2010, 59(3): 1487-1493. doi: 10.7498/aps.59.1487
    [15] 孙鸣超. 起源于引力场的Vaidya-Bonner-de Sitter黑洞的量子熵. 物理学报, 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [16] 邵建舟, 王永久. 整体单极子黑洞引力场中的加速效应. 物理学报, 2012, 61(11): 110402. doi: 10.7498/aps.61.110402
    [17] 罗志强, 赵峥. 变加速直线运动黑洞的量子热效应. 物理学报, 1993, 42(3): 506-512. doi: 10.7498/aps.42.506
    [18] 黎忠恒, 米丽琴. 球对称动态黑洞的量子能层效应. 物理学报, 1999, 48(4): 575-580. doi: 10.7498/aps.48.575
    [19] 卢卯旺. 轴对称荷电动态黑洞的量子热效应. 物理学报, 2000, 49(6): 1035-1038. doi: 10.7498/aps.49.1035
    [20] 葛伟宽, 张 毅. 完整力学系统的Lie-形式不变性. 物理学报, 2005, 54(11): 4985-4988. doi: 10.7498/aps.54.4985
  • 引用本文:
    Citation:
计量
  • 文章访问数:  853
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-02
  • 修回日期:  2017-12-25
  • 刊出日期:  2019-03-20

引力彩虹时空中Kerr黑洞的熵谱和面积谱

  • 1. 绍兴文理学院物理系, 绍兴 312000
  • 通信作者: 刘成周, czlbj20@aliyun.com
    基金项目: 

    浙江省自然科学基金(批准号:LY14A030001)和国家自然科学基金(批准号:11373020)资助的课题.

摘要: 利用黑洞的绝热不变性,研究了引力彩虹时空中Kerr黑洞的熵谱和面积谱.首先,在引力彩虹时空背景下,计算了Kerr黑洞的绝热不变作用量,并将其与玻尔-索末菲量子化条件相结合,给出了黑洞的熵谱.得到的熵谱没有引力彩虹时空本身具有的粒子能量依赖性,且是与经典Kerr黑洞中原始贝肯斯坦熵谱相同的等间距熵谱.然后,根据黑洞热力学第一定律和黑洞熵谱,给出了与原始贝肯斯坦谱不同的面积谱.该面积谱是非等间距的,而且有对黑洞面积的依赖性,但不依赖于探测粒子的能量.面积谱表明,随着黑洞面积的减少,面积间隔逐步变小;当黑洞达到普朗克尺度时,面积量子可降为零.这表示黑洞面积不再减少,黑洞出现辐射剩余.而在忽略色散关系的修正效应或在大黑洞极限下,面积谱的修正项可以忽略,引力彩虹Kerr黑洞面积谱可以回归到原始贝肯斯坦谱.此外,对引力彩虹时空Kerr黑洞的熵进行了讨论,得到了带有面积倒数修正项的黑洞熵,分析了黑洞熵的量子修正与面积谱量子修正的一致性.

English Abstract

参考文献 (72)

目录

    /

    返回文章
    返回