搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子碰撞电离过程中程函近似效应的理论研究

陈展斌 马堃

引用本文:
Citation:

质子碰撞电离过程中程函近似效应的理论研究

陈展斌, 马堃

Influence of eikonal-initial-state on ionization of atom by proton

Chen Zhan-Bin, Ma Kun
PDF
导出引用
  • 分别利用连续扭曲波方法和初态程函近似-连续扭曲波方法对质子碰撞电离氖原子1s,2s,2p壳层后随电离电子能量变化的单重微分散射截面(SDCS)和二重微分散射截面(DDCS)及总截面进行了计算,所得结果与部分实验数据符合得很好.详细探讨了各壳层SDCS和DDCS的细致结构以及质子碰撞的电离机制.结果表明,对于氖原子2p壳层,随着入射质子能量的增加,SDCS的区域变长,幅度减小,在低能区以软电离为主;而DDCS出现的峰均迅速减小.此外,分析了初态程函近似对SDCS和DDCS的影响,发现该效应对截面的影响在低能入射时非常明显,随着入射能量的增大,这种影响逐渐减弱.
    Apart from its fundamental importance, ionization phenomenon of atoms by impact of energetic charged particles has practical applications in various kinds of plasmas, in radiation physics and in the study of penetration of charged particles through matter. Compared with other processes, this particular reaction helps to reveal many details about the dynamical process and the level population, and, in fact, can provide a new insight into and a promising route to studying the e-p interactions in the presence of Coulomb field. The development of ion sources producing multiply charged ions and of antiproton beams allow us to change the potentials and hence the whole final momentum distribution. A great variety of experimental conditions allowed by changing the projectile charge and velocity constitute a stringent test for theory. The continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximation model has emerged as a reliable method to compute cross sections for different projectile/target combinations from intermediate to high non-relativistic impact energies. This model is of the first order in a distorted-wave series. It takes into account the long-range behaviour of the Coulomb potential and includes the distortion of the target states in both the initial and final channels. In the present work, the single different cross sections (SDCS), double different cross sections (DDCS), and total cross sections for single ionization of 1s, 2s and 2p shell of Ne atom by impact of proton are calculated in the framework of continuum-distorted-wave (CDW) method and the CDW-EIS approximation model, respectively. The influence of the eikonal-initial-state on the cross section, and the mechanism of the proton-atom collision ionization are discussed in detail. Moreover, the structures of the SDCS and DDCS of each shell are studied and the ionization mechanism of soft collision, electron capture to the continuum state, binary encounter collision are demonstrated. Our results show that for the 2p shell of Neon, as the incident proton energy increases, the region of the SDCS becomes larger and the soft ionization turns dominant in the low energy region. The eikonal-initial-state effect on the cross section is obvious in the lower energy region, yet smaller as the incident energy increases. These effects on the DDCS are greater than on the SDCS. The present CDW-EIS and CDW results are compared with the experimental data available in the energy range of 1-5000 keV/u for H+ on Ne in the literature, showing that they are quantitatively in good agreement. In general, the CDW-EIS describes well the multiple ionization above 50 keV/u, showing a clear tendency to coalesce with the CDW at high energies.
      通信作者: 陈展斌, chenzhanbin008@qq.com
    • 基金项目: 国家自然科学基金(批准号:11504421)、安徽省自然科学基金(批准号:1808085QA22)和安徽省高校优秀青年人才支持计划重点项目(批准号:gxyqZD2016301)资助的课题.
      Corresponding author: Chen Zhan-Bin, chenzhanbin008@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504421), the Natural Science Foundation of Anhui Province, China (Grant No. 1808085QA22), and the Key Project for Young Talents in College of Anhui Province, China (Grant No. gxyqZD2016301).
    [1]

    Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075(in Chinese) [宁烨,何斌,刘春雷,颜君,王建国 2005 物理学报 54 3075]

    [2]

    Eckhardt M, Schartner K H 1983 Z. Phys. A: Hadrons Nucl. 312 321

    [3]

    Janev R K, Kato T, Wang J G 2000 Phys. Plasma 7 4364

    [4]

    Miraglia J E, Gravielle M S 2010 Phys. Rev. A 81 042709

    [5]

    Tong X M, Li J M 1987 Acta Phys. Sin. 36 773(in Chinese) [仝晓明,李家明 1987 物理学报 36 773]

    [6]

    Zhou X X, Zhang X Z, Chen H S, Dong C Z 1997 Acta Phys. Sin. 46 1096(in Chinese) [周效信,张现周,陈宏善,董晨钟 1997 物理学报 46 1096]

    [7]

    Suzuki S, Gulys L, Shimakura N, Fainstein P D, Shirai T 2000 J. Phys. B 33 3307

    [8]

    Schultz D R, Krstić P S, Reinhold C O 1996 Phys. Scr. T62 69

    [9]

    Rudd M E, Kim Y K, Madison D H, Gallagher J W 1985 Rev. Mod. Phys. 57 965

    [10]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Phys. Rev. A 90 012703

    [11]

    Chen Z B, Dong C Z, Jiang J 2014 Phys. Rev. A 90 022715

    [12]

    Chen Z B, Zeng J L, Dong C Z 2015 J. Phys. B 48 045202

    [13]

    Chen Z B, Zeng J L, Hu H W, Dong C Z 2015 J. Phys. B 48 144005

    [14]

    Chen Z B, Dong C Z, Jiang J, Xie L Y 2015 J. Phys. B 48 144030

    [15]

    Chen Z B, Zeng J L 2015 J. Phys. B 48 245201

    [16]

    ORourke S F C, McSherry D M, Crothers D S F 2000 Comput. Phys. Commun. 131 129

    [17]

    Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B 43 165201

    [18]

    Crothers D S F, McCann J F 1983 J. Phys. B 16 3229

    [19]

    Monti J M, Fojon O A, Hanssen J, Rivarola R D 2013 J. Phys. B 46 145201

    [20]

    Bernal M A, Liendo J A 2007 Nucl. Instrum. Methods Phys. Res. B 262 1

  • [1]

    Ning Y, He B, Liu C L, Yan J, Wang J G 2005 Acta Phys. Sin. 54 3075(in Chinese) [宁烨,何斌,刘春雷,颜君,王建国 2005 物理学报 54 3075]

    [2]

    Eckhardt M, Schartner K H 1983 Z. Phys. A: Hadrons Nucl. 312 321

    [3]

    Janev R K, Kato T, Wang J G 2000 Phys. Plasma 7 4364

    [4]

    Miraglia J E, Gravielle M S 2010 Phys. Rev. A 81 042709

    [5]

    Tong X M, Li J M 1987 Acta Phys. Sin. 36 773(in Chinese) [仝晓明,李家明 1987 物理学报 36 773]

    [6]

    Zhou X X, Zhang X Z, Chen H S, Dong C Z 1997 Acta Phys. Sin. 46 1096(in Chinese) [周效信,张现周,陈宏善,董晨钟 1997 物理学报 46 1096]

    [7]

    Suzuki S, Gulys L, Shimakura N, Fainstein P D, Shirai T 2000 J. Phys. B 33 3307

    [8]

    Schultz D R, Krstić P S, Reinhold C O 1996 Phys. Scr. T62 69

    [9]

    Rudd M E, Kim Y K, Madison D H, Gallagher J W 1985 Rev. Mod. Phys. 57 965

    [10]

    Chen Z B, Dong C Z, Xie L Y, Jiang J 2014 Phys. Rev. A 90 012703

    [11]

    Chen Z B, Dong C Z, Jiang J 2014 Phys. Rev. A 90 022715

    [12]

    Chen Z B, Zeng J L, Dong C Z 2015 J. Phys. B 48 045202

    [13]

    Chen Z B, Zeng J L, Hu H W, Dong C Z 2015 J. Phys. B 48 144005

    [14]

    Chen Z B, Dong C Z, Jiang J, Xie L Y 2015 J. Phys. B 48 144030

    [15]

    Chen Z B, Zeng J L 2015 J. Phys. B 48 245201

    [16]

    ORourke S F C, McSherry D M, Crothers D S F 2000 Comput. Phys. Commun. 131 129

    [17]

    Montanari C C, Montenegro E C, Miraglia J E 2010 J. Phys. B 43 165201

    [18]

    Crothers D S F, McCann J F 1983 J. Phys. B 16 3229

    [19]

    Monti J M, Fojon O A, Hanssen J, Rivarola R D 2013 J. Phys. B 46 145201

    [20]

    Bernal M A, Liendo J A 2007 Nucl. Instrum. Methods Phys. Res. B 262 1

  • [1] 周旭, 王川, 胡荣豪, 陶治豪, 邓小良, 梁亦寒, 李晓亚, 吕蒙, 祝文军. 中高Z元素原子、离子的电子碰撞电离与激发截面快速计算方法. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240213
    [2] 周丽霞, 张燕, 燕友果. 电子碰撞Ne和类Ne离子电离的三重微分截面理论研究. 物理学报, 2017, 66(20): 203401. doi: 10.7498/aps.66.203401
    [3] 张立民, 贾昌春, 王琦, 陈长进. 共面双对称条件下电子碰撞Ar原子单电离的一阶扭曲波Born近似. 物理学报, 2014, 63(15): 153401. doi: 10.7498/aps.63.153401
    [4] 赵无垛, 王卫国, 李海洋. 中等光强纳秒激光电离苯团簇产生多价碳离子的数值模拟和实验研究. 物理学报, 2014, 63(10): 103602. doi: 10.7498/aps.63.103602
    [5] 张汉君, 单旭, 徐春凯, 陈向军. 共面不对称条件下低能电子碰撞电离Ar(3p)的三重微分截面. 物理学报, 2013, 62(18): 183401. doi: 10.7498/aps.62.183401
    [6] 刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰. 超短超强激光与薄膜靶相互作用中不同价态碳离子的来源. 物理学报, 2013, 62(16): 165201. doi: 10.7498/aps.62.165201
    [7] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [8] 丁丁, 何斌, 屈世显, 王建国. 强磁场下He2++H(1s)的碰撞电离微分截面及电离机理研究. 物理学报, 2013, 62(3): 033401. doi: 10.7498/aps.62.033401
    [9] 陈展斌, 杨欢, 张穗萌. 150 eV电子入射电离He原子三重微分截面的动量转移依赖. 物理学报, 2012, 61(4): 043402. doi: 10.7498/aps.61.043402
    [10] 孙世艳, 贾祥富, 苗向阳, 李霞, 马晓艳. 共面双对称几何条件下电子碰撞Na原子单电离的三重微分截面. 物理学报, 2012, 61(9): 093402. doi: 10.7498/aps.61.093402
    [11] 卓青青, 刘红侠, 杨兆年, 蔡惠民, 郝跃. 偏置条件对SOI NMOS器件总剂量辐照效应的影响. 物理学报, 2012, 61(22): 220702. doi: 10.7498/aps.61.220702
    [12] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [13] 孙伟峰, 李美成, 赵连城. 窄带隙超晶格中载流子俄歇寿命和碰撞电离率的第一性原理研究. 物理学报, 2010, 59(8): 5661-5666. doi: 10.7498/aps.59.5661
    [14] 孙世艳, 贾祥富, 师文强, 李雄伟. 非共面几何条件下102eV电子碰撞He原子电离的全微分截面. 物理学报, 2008, 57(6): 3458-3463. doi: 10.7498/aps.57.3458
    [15] 张穗萌, 吴兴举, 孙 瑞, 杨 欢, 高 矿, 周 军. 低能电子入射电离He原子二重微分截面的理论研究. 物理学报, 2007, 56(11): 6378-6385. doi: 10.7498/aps.56.6378
    [16] 王晓峰, 贾天卿, 徐至展. 周期量级超短激光脉冲作用下导带电子的光吸收与碰撞电离. 物理学报, 2005, 54(7): 3451-3456. doi: 10.7498/aps.54.3451
    [17] 颜士翔, 陈重阳, 滕舟轩, 王炎森, 孙永盛. 低和中等电离度离子的电子碰撞电离截面的扭曲波计算. 物理学报, 1998, 47(4): 583-590. doi: 10.7498/aps.47.583
    [18] 方泉玉, 蔡蔚, 沈智军, 李萍, 邹宇, 徐元光, 陈国新. 电子与高荷电离子碰撞激发的扭曲波截面. 物理学报, 1995, 44(3): 383-395. doi: 10.7498/aps.44.383
    [19] 胡畏, 王炎森, 方渡飞, 陆福全, 杨福家. 电子氢原子碰撞电离能量微分截面和总截面的理论计算. 物理学报, 1994, 43(7): 1083-1089. doi: 10.7498/aps.43.1083
    [20] 方渡飞, 王炎森, 胡畏. 类氦离子的电子碰撞电离微分截面. 物理学报, 1992, 41(5): 744-749. doi: 10.7498/aps.41.744
计量
  • 文章访问数:  4647
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 修回日期:  2018-03-19
  • 刊出日期:  2018-06-05

/

返回文章
返回