搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优化线性波数光谱仪的谱域光学相干层析成像系统

吴彤 孙帅帅 王绪晖 王吉明 赫崇君 顾晓蓉 刘友文

基于最优化线性波数光谱仪的谱域光学相干层析成像系统

吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文
PDF
导出引用
导出核心图
  • 相比传统光谱仪,基于线性波数光谱仪的谱域光学相干层析(OCT)无需对非线性波数干涉光谱数据进行重采样和插值,可大大减少数据计算量并提高成像灵敏度.通过模拟计算干涉光谱信号和点扩散函数,以点扩散函数半峰全宽值的倒数作为评价准则,可以优化包括色散棱镜材料的折射率、顶角角度以及衍射光栅和色散棱镜之间旋转角角度的线性波数光谱仪的结构参数.根据优化结果,实验中选用F2玻璃等边色散棱镜,以光栅-棱镜间旋转角角度为21.8°搭建了最优化线性波数光谱仪,并引入谱域OCT成像系统.实验测得成像系统的轴向分辨率达到8.52 μm,灵敏度达到91 dB,6 dB成像深度达到1.2 mm.结合具有通用并行计算能力的图形处理卡,在无需重采样和插值的情况下可实时处理和显示人手指指甲皮肤接缝处的横断面OCT图像,验证了基于最优化线性波数光谱仪的谱域OCT系统的成像性能.
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Fercher F A, Hitzenberger C K, Kamp G, Elzaiat S Y 1995 Opt. Commun. 117 43

    [3]

    Hausler G, Lindner M W 1998 J. Biomed. Opt. 3 21

    [4]

    Cho H S, Jang S J, Kim K, Dan A V, Shishkov M, Bouma B E, Oh W Y 2013 Biomed. Opt. Express 5 223

    [5]

    Wang R K, Zhang A Q, Choi W J, Zhang Q Q, Chen C L, Miller A, Gregori G, Rosenfeld P J 2016 Opt. Lett. 41 2330

    [6]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)[梁艳梅, 周大川, 孟凡勇, 王明伟 2007 物理学报 56 3246]

    [7]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese)[贾亚青, 梁艳梅, 朱晓农 2007 物理学报 56 3861]

    [8]

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 60 023401 (in Chinese)[黄良敏, 丁志华, 洪威, 王川 2011 物理学报 60 023401]

    [9]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Expresss 11 889

    [10]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183

    [11]

    Brauer B, Murdoch S G, Vanholsbeeck F 2016 Opt. Lett. 41 5732

    [12]

    Zhang M, Hwang T S, Campbell J P, Bailey S T, Wilson J D, Huang D, Jia Y 2016 Biomed. Opt. Express 7 816

    [13]

    Photiou C, Bousi E, Zouvani I, Pitris C 2017 Biomed. Opt. Express 8 2528

    [14]

    Chen J B, Zeng Y G, Yuan Z L, Tang Z L 2018 Acta Opt. Sin. 38 0111001 (in Chinese)[陈俊波, 曾亚光, 袁治灵, 唐志列 2018 光学学报 38 0111001]

    [15]

    Gao W R, Chen Y D, Liu C, Zhang T Q, Zhu Y 2016 Acta Opt. Sin. 45 0611001 (in Chinese)[高万荣, 陈一丹, 刘畅, 张秋庭, 朱越 2016 光学学报 45 0611001]

    [16]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese)[鲍文, 丁志华, 王川, 梅胜涛 2013 物理学报 62 114202]

    [17]

    Hu Z L, Pan Y S, Rollins A M 2007 Appl. Opt. 46 8499

    [18]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795

    [19]

    Hu Z L, Rollins A M 2007 Phys. Opt. Lett. 32 3525

    [20]

    Gelikonov V M, Gelikonov G V, Shilyagin P A 2009 Opt. Spectrosc. 106 459

    [21]

    Watanabe Y, Itagaki T 2009 J. Biomed. Opt. 14 48

    [22]

    Lee S W, Kam H, Joo H P, Tae G L, Eun S L, Jae Y L 2015 J. Opt. Soc. Korea 19 55

    [23]

    Lan G P, Li G Q 2017 Sci. Rep. 7 75

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Fercher F A, Hitzenberger C K, Kamp G, Elzaiat S Y 1995 Opt. Commun. 117 43

    [3]

    Hausler G, Lindner M W 1998 J. Biomed. Opt. 3 21

    [4]

    Cho H S, Jang S J, Kim K, Dan A V, Shishkov M, Bouma B E, Oh W Y 2013 Biomed. Opt. Express 5 223

    [5]

    Wang R K, Zhang A Q, Choi W J, Zhang Q Q, Chen C L, Miller A, Gregori G, Rosenfeld P J 2016 Opt. Lett. 41 2330

    [6]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)[梁艳梅, 周大川, 孟凡勇, 王明伟 2007 物理学报 56 3246]

    [7]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese)[贾亚青, 梁艳梅, 朱晓农 2007 物理学报 56 3861]

    [8]

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 60 023401 (in Chinese)[黄良敏, 丁志华, 洪威, 王川 2011 物理学报 60 023401]

    [9]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Expresss 11 889

    [10]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183

    [11]

    Brauer B, Murdoch S G, Vanholsbeeck F 2016 Opt. Lett. 41 5732

    [12]

    Zhang M, Hwang T S, Campbell J P, Bailey S T, Wilson J D, Huang D, Jia Y 2016 Biomed. Opt. Express 7 816

    [13]

    Photiou C, Bousi E, Zouvani I, Pitris C 2017 Biomed. Opt. Express 8 2528

    [14]

    Chen J B, Zeng Y G, Yuan Z L, Tang Z L 2018 Acta Opt. Sin. 38 0111001 (in Chinese)[陈俊波, 曾亚光, 袁治灵, 唐志列 2018 光学学报 38 0111001]

    [15]

    Gao W R, Chen Y D, Liu C, Zhang T Q, Zhu Y 2016 Acta Opt. Sin. 45 0611001 (in Chinese)[高万荣, 陈一丹, 刘畅, 张秋庭, 朱越 2016 光学学报 45 0611001]

    [16]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese)[鲍文, 丁志华, 王川, 梅胜涛 2013 物理学报 62 114202]

    [17]

    Hu Z L, Pan Y S, Rollins A M 2007 Appl. Opt. 46 8499

    [18]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795

    [19]

    Hu Z L, Rollins A M 2007 Phys. Opt. Lett. 32 3525

    [20]

    Gelikonov V M, Gelikonov G V, Shilyagin P A 2009 Opt. Spectrosc. 106 459

    [21]

    Watanabe Y, Itagaki T 2009 J. Biomed. Opt. 14 48

    [22]

    Lee S W, Kam H, Joo H P, Tae G L, Eun S L, Jae Y L 2015 J. Opt. Soc. Korea 19 55

    [23]

    Lan G P, Li G Q 2017 Sci. Rep. 7 75

  • [1] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [2] 刘 迎, 王利军, 郭云峰, 高宗慧, 田会娟, 张小娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
    [3] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [4] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [5] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响. 物理学报, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [6] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [7] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [8] 刘敏, 王谨, 詹明生, 任利春, 周林, 李润兵. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [9] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [10] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [11] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [12] 刘建华, 唐军, 商成龙, 张伟, 毕钰, 翟陈婷, 郭泽彬, 王明焕, 郭浩, 钱坤, 刘俊, 薛晨阳. 面向谐振式微光学陀螺应用的球形谐振腔DQ乘积优化. 物理学报, 2015, 64(15): 154206. doi: 10.7498/aps.64.154206
    [13] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究. 物理学报, 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [14] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究. 物理学报, 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [15] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [16] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [17] 刘曙娥, 田 亮, 施大宁, 戴存礼. 推广的失活网络动力学同步优化. 物理学报, 2008, 57(8): 4800-4804. doi: 10.7498/aps.57.4800
    [18] 韩定定, 姚清清, 陈趣, 钱江海. 基于时变小世界模型的航空网优化评估. 物理学报, 2017, 66(24): 248901. doi: 10.7498/aps.66.248901
    [19] 程 成, 何赛灵. 大口径铜蒸气激光“黑心”的优化消除. 物理学报, 2000, 49(7): 1267-1272. doi: 10.7498/aps.49.1267
    [20] 马千里, 彭宏, 张春涛. 基于信息熵优化相空间重构参数的混沌时间序列预测. 物理学报, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
  • 引用本文:
    Citation:
计量
  • 文章访问数:  299
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-07
  • 修回日期:  2018-03-15
  • 刊出日期:  2018-05-20

基于最优化线性波数光谱仪的谱域光学相干层析成像系统

    基金项目: 

    中央高校基本科研业务费专项资金(批准号:NZ2015104)资助的课题.

摘要: 相比传统光谱仪,基于线性波数光谱仪的谱域光学相干层析(OCT)无需对非线性波数干涉光谱数据进行重采样和插值,可大大减少数据计算量并提高成像灵敏度.通过模拟计算干涉光谱信号和点扩散函数,以点扩散函数半峰全宽值的倒数作为评价准则,可以优化包括色散棱镜材料的折射率、顶角角度以及衍射光栅和色散棱镜之间旋转角角度的线性波数光谱仪的结构参数.根据优化结果,实验中选用F2玻璃等边色散棱镜,以光栅-棱镜间旋转角角度为21.8°搭建了最优化线性波数光谱仪,并引入谱域OCT成像系统.实验测得成像系统的轴向分辨率达到8.52 μm,灵敏度达到91 dB,6 dB成像深度达到1.2 mm.结合具有通用并行计算能力的图形处理卡,在无需重采样和插值的情况下可实时处理和显示人手指指甲皮肤接缝处的横断面OCT图像,验证了基于最优化线性波数光谱仪的谱域OCT系统的成像性能.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回