搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温金属熔体黏度突变探索

商继祥 赵云波 胡丽娜

高温金属熔体黏度突变探索

商继祥, 赵云波, 胡丽娜
PDF
导出引用
导出核心图
  • 高温金属熔体的黏度是衡量液态金属动力学性质的一个重要指标,是高温金属熔体的基本物理性能之一.熔体的黏度在表征脆性系数、金属玻璃形成能力的大小和液-液相变现象方面起关键性作用.本文在介绍高温金属熔体黏度测量方法的基础上,综合评述了单质、二元和多元合金黏度随温度的变化规律和黏度突变特征,分析了黏度突变研究的物理意义,并指出高温金属熔体黏度今后研究的发展方向.
      通信作者: 胡丽娜, hulina0850@sina.com
    • 基金项目: 国家科技重大专项(批准号:2016YFB0300500)和国家自然科学基金(批准号:51571131)资助的课题.
    [1]

    Han X F 2005 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[韩秀峰 2005 硕士学位论文 (济南:山东大学)]

    [2]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [3]

    Bian X F, Sun B A, Hu L N, Jia Y B 2005 Phys. Lett. A 335 61

    [4]

    Meng Q G, Zhou J K, Zheng H X, Li J G 2006 Scr. Mater. 54 777

    [5]

    Hu L N, Bian X F 2003 Chin. Sci. Bull. 48 2393 (in Chinese)[胡丽娜, 边秀房 2003 科学通报 48 2393]

    [6]

    Hu L N, Zhang C Z, Yue Y Z, Bian X F 2010 Chin. Sci. Bull. 55 115 (in Chinese)[胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115]

    [7]

    Books R F, Dinsdale A T, Quested P N 2005 Meas. Sci. Technol. 16 354

    [8]

    Dinsdale A T, Quested P N 2004 J. Mater. Sci. 39 7221

    [9]

    Torklep K, Oye H A 1979 J. Phys. E 12 875

    [10]

    Sato Y, Kameda Y, Nagasawa T, Sakamoto T, Moriguchi S, Yamamura T, Waseda Y 2003 J. Cryst. Growth 249 404

    [11]

    Kehr M, Hoyer W, Egry I 2007 Int. J. Thermophys. 28 1017

    [12]

    Nunes V M B, Santos F J V, de Castro C A N 1998 Int. J. Thermophys. 19 427

    [13]

    Schenck H, Frohberg M G, Hoffmann K 1963 Steel Res. Int. 34 93

    [14]

    Emadi D, Gruzleski J E, Toguri J M 1993 Metall. Trans. B 24 1055

    [15]

    Xu Y P, Zhao X L, Yan T L 2017 Chin. Phys. B 26 036601

    [16]

    Wu Y Q, Bian X F, Mao T, Li X L, Li T B, Wang C D 2006 Phys. Lett. A 361 265

    [17]

    Sun C, Geng H, Liu J, Gneg H, Yang Z 2004 Phys. Meas. 1 16

    [18]

    Wang C Z 2017 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[王春震 2017 硕士学位论文 (济南:山东大学)]

    [19]

    Guo H D 2008 M. S. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[郭海东 2008 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [20]

    Sun C J, Geng H R, Zhang N, Teng X Y, Ji L L 2008 Mater. Lett. 62 73

    [21]

    Mao T, Bian X F, Morioka S, Wu Y Q, Li X L, L X Q 2007 Phys. Lett. 366 155

    [22]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metal. Sin. 36 1134 (in Chinese)[孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [23]

    Wang L, Bian X F, Liu J T 2004 Phys. Lett. A 326 429

    [24]

    Ofte D, Wittenberg L J 1963 Trans. Metall. Soc. Aime. 227 706

    [25]

    Rothwell E 1961 J. Inst. Metals 90 389

    [26]

    Gebhardt E, Kostlin K 1957 Z. Metallkd. 48 636

    [27]

    Schenck H, Frohberg M G, Hoffmann K 1963 Arch. Eisenhuettenw. 34 93

    [28]

    Cavalier G 1963 Compt. Rend. 256 1308

    [29]

    Kaplun A B, Avaliani M 1977 High Temp. 15 259

    [30]

    Nikolaev B, Vollmann J 1996 J. Non-Cryst. Solids 208 145

    [31]

    Martin-Garin L, Martin-Garin R, Despre P 1978 J. Less Common. Met. 59 1

    [32]

    Zhao X, Wang C Z, Zheng H J, Tian Z A, Hu L N 2017 Phys. Chem. Chem. Phys. 19 15962

    [33]

    Zhao Y, Hou X X, Bian X F 2008 Mater. Lett. 62 3542

    [34]

    Zhou C, Hu L N, Sun Q J, Bian X F, Yue Y Z 2013 Appl. Phys. 103 171904

    [35]

    Ning S, Bian X F, Ren Z F 2010 Phys. B:Condens. Matter 405 3633

    [36]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Phys. B:Phys. Condens. Matter 387 1

    [37]

    Konstantinova N Y, Popel' P S, Yagodin D A 2009 High Temp. 47 336

    [38]

    Inoue A, Takeuchi A 2010 Int. J. Appl. Glass Sci. 1 273

    [39]

    Wang L, Liu J T 2004 Phys. Lett. A 328 241

    [40]

    Zheng H J, Hu L N, Zhao X, Wang C Z, Sun Q J, Wang T, Hui X D, Yue Y Z, Bian X F 2017 J. Non-Cryst. Solids 471 120

    [41]

    Zhang F, Du Y, Liu S H, Jie W Q 2015 Comput. Coupling Phase Diagrams Thermochem. 49 79

    [42]

    Jia R, Bian X F, Lu X Q, Song K K, Li X L 2010 Phys. Mech. Astron. 53 390

    [43]

    Gancarz T, Gasior W 2016 Fluid Phase Equilib. 418 57

    [44]

    Liu Y H, Lu X W, Bai C G, Lai P S, Wang J S 2015 J. Ind. Eng. Chem. 30 106

    [45]

    Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z, Jiang J Z 2014 Acta Mater. 68 1

    [46]

    Xiong L H, Chen K, Ke F S, Lou H B, Yue G Q, Shen B, Dong F, Wang S Y, Chen L Y, Wang C Z, Ho K M, Wang X D, Lai L H, Xiao T Q, Jiang J Z 2015 Acta Mater. 92 109

    [47]

    Xiong L H, Yoo H, Lou H B, Wang X D, Cao Q P, Zhang D X, Cao Q P, Zhang D X, Jian J Z, Xie H L, Xiao T Q, Jeon S, Lee G M 2015 J. Phys.:Condens. Matter 27 035102

    [48]

    Xiong L H, Guo F M, Wang X D, Cao Q P, Zhang D X, Ren Y, Jiang J Z 2017 J. Non-Cryst. Solids 459 160

    [49]

    Xiong L H, Wang X D, Cao Q P, Zhang D X, Xie H L, Xiao T Q, Jiang J Z 2017 J. Phys.:Condens. Matter 29 035101

    [50]

    Su Y, Wang X D, Yu Q, Cao Q P, Ruett U, Zhang D X, Jiang J Z 2018 J. Phys.:Condens. Matter 30 015402

    [51]

    Wang C W, Hu L N, Chen W, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Phys. Chem. 141 164507

    [52]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Phys. Chem. 138 174508

    [53]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Phys. Chem. Lett. 143 164504

    [54]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [55]

    Iida T, Roderick I L, 1993 The Properties of Liquid Metals (Oxford:University Press) pp147-199

    [56]

    Gui M C 1994 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[桂满昌 1994 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [57]

    Iidia T, Ueda M, Morita Z 1976 Tetsu to Hagane 62 1169

    [58]

    Morita Z, Iida T, Ueda M 1997 Inst. Phys. Conf. Ser. 30 600

    [59]

    Djemili B, Martin-Garin L, Hicter P 1980 J. Phys. Colloq. C8 41 363

    [60]

    Enskog D 1922 Arkiv. Mth. Astron. Fys. 16 16

    [61]

    Tham M K, Gubbins K E 1971 J. Chem. Phys. 55 268

  • [1]

    Han X F 2005 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[韩秀峰 2005 硕士学位论文 (济南:山东大学)]

    [2]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [3]

    Bian X F, Sun B A, Hu L N, Jia Y B 2005 Phys. Lett. A 335 61

    [4]

    Meng Q G, Zhou J K, Zheng H X, Li J G 2006 Scr. Mater. 54 777

    [5]

    Hu L N, Bian X F 2003 Chin. Sci. Bull. 48 2393 (in Chinese)[胡丽娜, 边秀房 2003 科学通报 48 2393]

    [6]

    Hu L N, Zhang C Z, Yue Y Z, Bian X F 2010 Chin. Sci. Bull. 55 115 (in Chinese)[胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115]

    [7]

    Books R F, Dinsdale A T, Quested P N 2005 Meas. Sci. Technol. 16 354

    [8]

    Dinsdale A T, Quested P N 2004 J. Mater. Sci. 39 7221

    [9]

    Torklep K, Oye H A 1979 J. Phys. E 12 875

    [10]

    Sato Y, Kameda Y, Nagasawa T, Sakamoto T, Moriguchi S, Yamamura T, Waseda Y 2003 J. Cryst. Growth 249 404

    [11]

    Kehr M, Hoyer W, Egry I 2007 Int. J. Thermophys. 28 1017

    [12]

    Nunes V M B, Santos F J V, de Castro C A N 1998 Int. J. Thermophys. 19 427

    [13]

    Schenck H, Frohberg M G, Hoffmann K 1963 Steel Res. Int. 34 93

    [14]

    Emadi D, Gruzleski J E, Toguri J M 1993 Metall. Trans. B 24 1055

    [15]

    Xu Y P, Zhao X L, Yan T L 2017 Chin. Phys. B 26 036601

    [16]

    Wu Y Q, Bian X F, Mao T, Li X L, Li T B, Wang C D 2006 Phys. Lett. A 361 265

    [17]

    Sun C, Geng H, Liu J, Gneg H, Yang Z 2004 Phys. Meas. 1 16

    [18]

    Wang C Z 2017 M. S. Dissertation (Jinan:Shandong University) (in Chinese)[王春震 2017 硕士学位论文 (济南:山东大学)]

    [19]

    Guo H D 2008 M. S. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[郭海东 2008 硕士学位论文(哈尔滨:哈尔滨工业大学)]

    [20]

    Sun C J, Geng H R, Zhang N, Teng X Y, Ji L L 2008 Mater. Lett. 62 73

    [21]

    Mao T, Bian X F, Morioka S, Wu Y Q, Li X L, L X Q 2007 Phys. Lett. 366 155

    [22]

    Sun M H, Geng H R, Bian X F, Liu Y 2000 Acta Metal. Sin. 36 1134 (in Chinese)[孙民华, 耿浩然, 边秀房, 刘燕 2000 金属学报 36 1134]

    [23]

    Wang L, Bian X F, Liu J T 2004 Phys. Lett. A 326 429

    [24]

    Ofte D, Wittenberg L J 1963 Trans. Metall. Soc. Aime. 227 706

    [25]

    Rothwell E 1961 J. Inst. Metals 90 389

    [26]

    Gebhardt E, Kostlin K 1957 Z. Metallkd. 48 636

    [27]

    Schenck H, Frohberg M G, Hoffmann K 1963 Arch. Eisenhuettenw. 34 93

    [28]

    Cavalier G 1963 Compt. Rend. 256 1308

    [29]

    Kaplun A B, Avaliani M 1977 High Temp. 15 259

    [30]

    Nikolaev B, Vollmann J 1996 J. Non-Cryst. Solids 208 145

    [31]

    Martin-Garin L, Martin-Garin R, Despre P 1978 J. Less Common. Met. 59 1

    [32]

    Zhao X, Wang C Z, Zheng H J, Tian Z A, Hu L N 2017 Phys. Chem. Chem. Phys. 19 15962

    [33]

    Zhao Y, Hou X X, Bian X F 2008 Mater. Lett. 62 3542

    [34]

    Zhou C, Hu L N, Sun Q J, Bian X F, Yue Y Z 2013 Appl. Phys. 103 171904

    [35]

    Ning S, Bian X F, Ren Z F 2010 Phys. B:Condens. Matter 405 3633

    [36]

    Mao T, Bian X F, Xue X Y, Zhang Y N, Guo J, Sun B A 2007 Phys. B:Phys. Condens. Matter 387 1

    [37]

    Konstantinova N Y, Popel' P S, Yagodin D A 2009 High Temp. 47 336

    [38]

    Inoue A, Takeuchi A 2010 Int. J. Appl. Glass Sci. 1 273

    [39]

    Wang L, Liu J T 2004 Phys. Lett. A 328 241

    [40]

    Zheng H J, Hu L N, Zhao X, Wang C Z, Sun Q J, Wang T, Hui X D, Yue Y Z, Bian X F 2017 J. Non-Cryst. Solids 471 120

    [41]

    Zhang F, Du Y, Liu S H, Jie W Q 2015 Comput. Coupling Phase Diagrams Thermochem. 49 79

    [42]

    Jia R, Bian X F, Lu X Q, Song K K, Li X L 2010 Phys. Mech. Astron. 53 390

    [43]

    Gancarz T, Gasior W 2016 Fluid Phase Equilib. 418 57

    [44]

    Liu Y H, Lu X W, Bai C G, Lai P S, Wang J S 2015 J. Ind. Eng. Chem. 30 106

    [45]

    Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z, Jiang J Z 2014 Acta Mater. 68 1

    [46]

    Xiong L H, Chen K, Ke F S, Lou H B, Yue G Q, Shen B, Dong F, Wang S Y, Chen L Y, Wang C Z, Ho K M, Wang X D, Lai L H, Xiao T Q, Jiang J Z 2015 Acta Mater. 92 109

    [47]

    Xiong L H, Yoo H, Lou H B, Wang X D, Cao Q P, Zhang D X, Cao Q P, Zhang D X, Jian J Z, Xie H L, Xiao T Q, Jeon S, Lee G M 2015 J. Phys.:Condens. Matter 27 035102

    [48]

    Xiong L H, Guo F M, Wang X D, Cao Q P, Zhang D X, Ren Y, Jiang J Z 2017 J. Non-Cryst. Solids 459 160

    [49]

    Xiong L H, Wang X D, Cao Q P, Zhang D X, Xie H L, Xiao T Q, Jiang J Z 2017 J. Phys.:Condens. Matter 29 035101

    [50]

    Su Y, Wang X D, Yu Q, Cao Q P, Ruett U, Zhang D X, Jiang J Z 2018 J. Phys.:Condens. Matter 30 015402

    [51]

    Wang C W, Hu L N, Chen W, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Phys. Chem. 141 164507

    [52]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Phys. Chem. 138 174508

    [53]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Phys. Chem. Lett. 143 164504

    [54]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [55]

    Iida T, Roderick I L, 1993 The Properties of Liquid Metals (Oxford:University Press) pp147-199

    [56]

    Gui M C 1994 Ph. D. Dissertation (Harbin:Harbin Institute of Technology) (in Chinese)[桂满昌 1994 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [57]

    Iidia T, Ueda M, Morita Z 1976 Tetsu to Hagane 62 1169

    [58]

    Morita Z, Iida T, Ueda M 1997 Inst. Phys. Conf. Ser. 30 600

    [59]

    Djemili B, Martin-Garin L, Hicter P 1980 J. Phys. Colloq. C8 41 363

    [60]

    Enskog D 1922 Arkiv. Mth. Astron. Fys. 16 16

    [61]

    Tham M K, Gubbins K E 1971 J. Chem. Phys. 55 268

  • [1] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [2] 李乡安, 龙志林, 彭建, 张平, 张志纯, 危洪清. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [3] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [4] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [5] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型. 物理学报, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [6] 付文玉, 侯锡苗, 贺丽霞, 郑志刚. 少体硬球系统的动力学与统计研究. 物理学报, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [7] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究. 物理学报, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [8] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [9] 俞宇颖, 习锋, 戴诚达, 蔡灵仓, 谭华, 李雪梅, 胡昌明. 冲击加载下Zr51Ti5Ni10Cu25Al9金属玻璃的塑性行为. 物理学报, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [10] 郑萍, 白海洋, 陈兆甲, 雒建林, 汪卫华, 林德华, 佟存柱, 张杰. 块体金属玻璃Zr_(48)Nb_8Cu_(12)Fe_8Be_(24)低温电阻的研究. 物理学报, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
    [11] 王军强, 欧阳酥. 金属玻璃流变的扩展弹性模型. 物理学报, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [12] 吴飞飞, 余鹏, 卞西磊, 谭军, 王建国, 王刚. 金属玻璃的断裂机理与其断裂韧度的关系. 物理学报, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [13] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇. 物理学报, 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [14] 安保林, 林鸿, 刘强, 段远源. 基于圆柱定程干涉法测量气体黏度的探索. 物理学报, 2013, 62(17): 175101. doi: 10.7498/aps.62.175101
    [15] 王珍玉, 杨院生, 童文辉, 李会强, 胡壮麒. 基于成分连续变化计算黏度的合金系临界冷速模型. 物理学报, 2007, 56(3): 1543-1548. doi: 10.7498/aps.56.1543
    [16] 张颖, 郑宇, 何茂刚. 对利用动态光散射法测量颗粒粒径和液体黏度的改进. 物理学报, 2018, 67(16): 167801. doi: 10.7498/aps.67.20180271
    [17] 孙艳丽, 王华光, 张泽新. 椭球与圆球混合胶体体系的玻璃化转变. 物理学报, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [18] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [19] 李剑锋, 张红东, 邱 枫, 杨玉良. 模拟囊泡形变动力学的新方法离散空间变分法. 物理学报, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [20] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
  • 引用本文:
    Citation:
计量
  • 文章访问数:  287
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-03-23
  • 刊出日期:  2018-05-20

高温金属熔体黏度突变探索

  • 1. 山东大学, 材料液固结构演变与加工教育部重点实验室, 济南 250061
  • 通信作者: 胡丽娜, hulina0850@sina.com
    基金项目: 

    国家科技重大专项(批准号:2016YFB0300500)和国家自然科学基金(批准号:51571131)资助的课题.

摘要: 高温金属熔体的黏度是衡量液态金属动力学性质的一个重要指标,是高温金属熔体的基本物理性能之一.熔体的黏度在表征脆性系数、金属玻璃形成能力的大小和液-液相变现象方面起关键性作用.本文在介绍高温金属熔体黏度测量方法的基础上,综合评述了单质、二元和多元合金黏度随温度的变化规律和黏度突变特征,分析了黏度突变研究的物理意义,并指出高温金属熔体黏度今后研究的发展方向.

English Abstract

参考文献 (61)

目录

    /

    返回文章
    返回