搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于棱镜二次聚光的高倍聚光模组聚光特性与三结电池光谱响应匹配与优化

郭银 舒碧芬 汪婧 杨晴川 江景祥 黄妍 周正龙

基于棱镜二次聚光的高倍聚光模组聚光特性与三结电池光谱响应匹配与优化

郭银, 舒碧芬, 汪婧, 杨晴川, 江景祥, 黄妍, 周正龙
PDF
导出引用
  • 目前Ⅲ-V多结高倍聚光(HCPV)太阳电池实验室效率记录已高达46%,而相对应的模组效率与之相差仍较大,其中由于模组中聚光非理想性引起的损失就高达20%.本文通过建立光学模型和非均匀光照的三维电池电路网络模型,以Ⅲ-V族三结电池为例,研究了菲涅耳透镜一次聚光、棱镜二次聚光的HCPV模组的聚光特性和光电特性.结果发现:由于光线非平行入射和菲涅耳透镜的色散现象,使得沿光轴方向短、中、长波段聚光发散及聚光不均匀,从而造成了三结电池的上、中、下各子电池光谱响应失配损失,模组光电转换性能下降;进一步,通过采用棱镜二次聚光,能较好地改善聚光和温度均匀性;通过对光轴方向上短、中、长波段的聚光特性与三结电池光谱响应匹配优化,使得模组输出功率提高10%以上.模拟结果已得到实验验证.
      通信作者: 舒碧芬, shubifen@163.com
    • 基金项目: 国家自然科学基金(U1707603)资助的课题.
    [1]

    Helmers H, Schachtner M, Bett A W 2013 Sol. Energy Mater. Sol. Cells 116 144

    [2]

    Zhang W, Chen C, Jia R, Sun Y, Xing Z, Jin Z, Liu X Y, Liu X W 2015 Chin. Phys. B 24 108801

    [3]

    Eduardo F F, Florencia A 2015 Energy Convers. Man-age 103 1031

    [4]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [5]

    Dimroth F, Tibbits T N D, Niemeyer M, Predan F, Beutel P, Karcher C, Oliva E, Siefer G, Lackner D, Fus-Kailuweit P, Bett A W, Krause R, Drazek C, Guiot E, Wasselin J, Tauzin A, Signamarcheix T 2016 IEEE J. Photovolt. 6 343

    [6]

    van Riesen S, Neubauer M, Boos A, Rico M M, Gourdel C, Wanka S, Krause R, Guernard P, Gombert A 2015 AIP Conf. Proc. 1679 100006

    [7]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energy Rev. 16 5890

    [8]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin. 63 168801 (in Chinese)[梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪 2014 物理学报 63 168801]

    [9]

    Lian R H, Liang Q B, Shu B F, Fan C, Wu X L, Guo Y, Wang J, Yang Q C 2016 Acta Phys. Sin. 65 148801 (in Chinese)[连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川 2016 物理学报 65 148801]

    [10]

    Li X, Lin G J, Liu H H, Chen S Y, Liu G Z 2017 Acta Phys. Sin. 66 148801 (in Chinese)[李欣, 林桂江, 刘翰辉, 陈松岩, 刘冠洲 2017 物理学报 66 148801]

    [11]

    Steiner M, Guter W, Peharz G, Philipps S, Dimroth F, Bett A W 2012 Prog. Photovolt. 20 274

    [12]

    Steiner M, Philipps S P, Hermle M, Bett A W, Dimroth F 2011 Prog. Photovolt. 19 73

    [13]

    Espinet P, Garcia I, Rey-Stolle I, Algora C, Baudrit M 2010 AIP Conf. Proc. 1277 24

    [14]

    Katz E A, Gordon J M, Tassew W, Feuermann D 2006 J. Appl. Phys. 100 044514

    [15]

    Segev G, Mittelman G, Kribus A 2012 Sol. Energy Mater. Sol. Cells 98 57

    [16]

    Rodrigo P, Fernández E F, Almonacid F, Pérez-Higueras P J 2013 Renew. Sust. Energy Rev. 26 752

    [17]

    Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801

    [18]

    Ota Y, Nishioka K 2012 Sol. Energy 86 476

    [19]

    Goma S, Yoshioka K, Saitoh T 1997 Sol. Energy Mater. Sol. Cells 47 339

    [20]

    Espinet-González P, Mohedano R, García I, Zamora P, Rey-Stolle I, Benitez P, Algora C, Cvetkovic A, Hernández M, Chaves J, Miñano J C, Li Y 2012 AIP Conf. Proc. 1477 81

    [21]

    Cui M, Chen N F, Deng J X 2012 Chin. Phys. B 21 034216

  • [1]

    Helmers H, Schachtner M, Bett A W 2013 Sol. Energy Mater. Sol. Cells 116 144

    [2]

    Zhang W, Chen C, Jia R, Sun Y, Xing Z, Jin Z, Liu X Y, Liu X W 2015 Chin. Phys. B 24 108801

    [3]

    Eduardo F F, Florencia A 2015 Energy Convers. Man-age 103 1031

    [4]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [5]

    Dimroth F, Tibbits T N D, Niemeyer M, Predan F, Beutel P, Karcher C, Oliva E, Siefer G, Lackner D, Fus-Kailuweit P, Bett A W, Krause R, Drazek C, Guiot E, Wasselin J, Tauzin A, Signamarcheix T 2016 IEEE J. Photovolt. 6 343

    [6]

    van Riesen S, Neubauer M, Boos A, Rico M M, Gourdel C, Wanka S, Krause R, Guernard P, Gombert A 2015 AIP Conf. Proc. 1679 100006

    [7]

    Baig H, Heasman K C, Mallick T K 2012 Renew. Sust. Energy Rev. 16 5890

    [8]

    Liang Q B, Shu B F, Sun L J, Zhang Q Z, Chen M B 2014 Acta Phys. Sin. 63 168801 (in Chinese)[梁齐兵, 舒碧芬, 孙丽娟, 张奇淄, 陈明彪 2014 物理学报 63 168801]

    [9]

    Lian R H, Liang Q B, Shu B F, Fan C, Wu X L, Guo Y, Wang J, Yang Q C 2016 Acta Phys. Sin. 65 148801 (in Chinese)[连榕海, 梁齐兵, 舒碧芬, 范畴, 吴小龙, 郭银, 汪婧, 杨晴川 2016 物理学报 65 148801]

    [10]

    Li X, Lin G J, Liu H H, Chen S Y, Liu G Z 2017 Acta Phys. Sin. 66 148801 (in Chinese)[李欣, 林桂江, 刘翰辉, 陈松岩, 刘冠洲 2017 物理学报 66 148801]

    [11]

    Steiner M, Guter W, Peharz G, Philipps S, Dimroth F, Bett A W 2012 Prog. Photovolt. 20 274

    [12]

    Steiner M, Philipps S P, Hermle M, Bett A W, Dimroth F 2011 Prog. Photovolt. 19 73

    [13]

    Espinet P, Garcia I, Rey-Stolle I, Algora C, Baudrit M 2010 AIP Conf. Proc. 1277 24

    [14]

    Katz E A, Gordon J M, Tassew W, Feuermann D 2006 J. Appl. Phys. 100 044514

    [15]

    Segev G, Mittelman G, Kribus A 2012 Sol. Energy Mater. Sol. Cells 98 57

    [16]

    Rodrigo P, Fernández E F, Almonacid F, Pérez-Higueras P J 2013 Renew. Sust. Energy Rev. 26 752

    [17]

    Yi S G, Zhang W H, Ai B, Song J W, Shen H 2014 Chin. Phys. B 23 028801

    [18]

    Ota Y, Nishioka K 2012 Sol. Energy 86 476

    [19]

    Goma S, Yoshioka K, Saitoh T 1997 Sol. Energy Mater. Sol. Cells 47 339

    [20]

    Espinet-González P, Mohedano R, García I, Zamora P, Rey-Stolle I, Benitez P, Algora C, Cvetkovic A, Hernández M, Chaves J, Miñano J C, Li Y 2012 AIP Conf. Proc. 1477 81

    [21]

    Cui M, Chen N F, Deng J X 2012 Chin. Phys. B 21 034216

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1474
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-31
  • 修回日期:  2018-03-07
  • 刊出日期:  2019-05-20

基于棱镜二次聚光的高倍聚光模组聚光特性与三结电池光谱响应匹配与优化

  • 1. 中山大学, 太阳能系统研究所, 广东省光伏技术重点实验室, 广州 510006
  • 通信作者: 舒碧芬, shubifen@163.com
    基金项目: 

    国家自然科学基金(U1707603)资助的课题.

摘要: 目前Ⅲ-V多结高倍聚光(HCPV)太阳电池实验室效率记录已高达46%,而相对应的模组效率与之相差仍较大,其中由于模组中聚光非理想性引起的损失就高达20%.本文通过建立光学模型和非均匀光照的三维电池电路网络模型,以Ⅲ-V族三结电池为例,研究了菲涅耳透镜一次聚光、棱镜二次聚光的HCPV模组的聚光特性和光电特性.结果发现:由于光线非平行入射和菲涅耳透镜的色散现象,使得沿光轴方向短、中、长波段聚光发散及聚光不均匀,从而造成了三结电池的上、中、下各子电池光谱响应失配损失,模组光电转换性能下降;进一步,通过采用棱镜二次聚光,能较好地改善聚光和温度均匀性;通过对光轴方向上短、中、长波段的聚光特性与三结电池光谱响应匹配优化,使得模组输出功率提高10%以上.模拟结果已得到实验验证.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回