搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析

卫壮志 薛文瑞 彭艳玲 程鑫 李昌勇

基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析

卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇
PDF
导出引用
  • 研究了一种基于涂覆石墨烯的三根电介质纳米线的THz波导,采用多极方法对这种波导所支持的5种低阶模的有效折射率的实部和传播长度进行了解析分析.结果表明,通过改变工作频率、中间纳米线半径、纳米线之间的间距以及石墨烯的费米能,可以有效地调节波导的模式特性.当工作频率从30 THz增加到40 THz时,这些模式的有效折射率的实部增大,传播长度减小,并且在变化的过程中会出现交叉现象.当中间纳米线的半径从25 nm增加到75 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部增大,传播长度变化各不相同.当纳米线之间的间距从10 nm增加到50 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部减小,传播长度增大,并且在变化的过程中会出现交叉现象.当石墨烯的费米能从0.4 eV增加到1.2 eV时,有效折射率的实部减小,传播长度增大.计算表明,多极法得到的结果与有限元方法得到的结果完全一致.本研究可以为基于涂覆石墨烯的电介质纳米线的THz波导的设计、制作和应用提供理论基础.
      通信作者: 薛文瑞, wrxue@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61378039,61575115)和国家基础科学人才培养基金(批准号:J1103210)资助的课题.
    [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory 50 910

    [2]

    Wang S H, Ferguson B, Zhang C L, Zhang X C 2003 Acta Phys. Sin. 52 120 (in Chinese) [王少宏,B. Ferguson,张存林,张希成 2003 物理学报 52 120]

    [3]

    Chen Q, Tani M, Jiang Z P, Zhang X C 2001 J. Opt. Soc. Am. B 18 823

    [4]

    Han H, Park H, Cho M, Kim J 2002 Appl. Phys. Lett. 80 2634

    [5]

    Redo-Sanchez A, Zhang X C 2008 IEEE J. Sel. Top. Quant. 14 260

    [6]

    Gallot G, Jamison S P, McGowan R W, Grischkowsky D 2000 J. Opt. Soc. Am. B 17 851

    [7]

    Kawase K, Mizuno M, Sohma S, Takahashi T, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065

    [8]

    Quema A, Takahashi H, Sakai M, Goto M, Ono S, Sarukura N, Shioda R, Yamada N 2003 Jpn. J. Appl. Phys. 42 L932

    [9]

    Chen L J, Chen H W, Kao T F, Lu J Y, Sun C K 2006 Opt. Lett. 31 308

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630

    [12]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880

    [13]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [14]

    He X Y, Kim S 2013 J. Opt. Soc. Am. B 30 2461

    [15]

    Wang J C, Wang X S, Shao H Y, Hu Z D, Zheng G G, Zhang F 2017 Nanoscale Res. Lett. 12 9

    [16]

    Donnelly C, Tan D T H 2014 Opt. Express 22 22820

    [17]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, Abajo F J G 2012 ACS Nano 6 431

    [18]

    Hajati M, Hajati Y 2016 Appl. Opt. 55 1878

    [19]

    Wang X S, Chen C, Pan L, Wang J C 2016 Sci. Rep. UK 6 32616

    [20]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664

    [21]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [22]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [23]

    Xing R, Jian S S 2016 IEEE Photon. Tech. L. 28 2779

    [24]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069

    [26]

    Yang H B, Qiu M, Li Q 2016 Laser Photon. Rev. 10 278

    [27]

    Wu X R, Huang C R, Xu K, Shu C, Tsang H K 2017 J. Lightwave Technol. 35 3223

    [28]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 195446

    [29]

    Wijngaard W 1973 J. Opt. Soc. Am. 63 944

    [30]

    Wijngaard W 1974 J. Opt. Soc. Am. 64 1136

    [31]

    Huang H S, Chang H C 1990 J. Lightwave Technol. 8 945

    [32]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [33]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [34]

    Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke C M, McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331

  • [1]

    Siegel P H 2002 IEEE Trans. Microw. Theory 50 910

    [2]

    Wang S H, Ferguson B, Zhang C L, Zhang X C 2003 Acta Phys. Sin. 52 120 (in Chinese) [王少宏,B. Ferguson,张存林,张希成 2003 物理学报 52 120]

    [3]

    Chen Q, Tani M, Jiang Z P, Zhang X C 2001 J. Opt. Soc. Am. B 18 823

    [4]

    Han H, Park H, Cho M, Kim J 2002 Appl. Phys. Lett. 80 2634

    [5]

    Redo-Sanchez A, Zhang X C 2008 IEEE J. Sel. Top. Quant. 14 260

    [6]

    Gallot G, Jamison S P, McGowan R W, Grischkowsky D 2000 J. Opt. Soc. Am. B 17 851

    [7]

    Kawase K, Mizuno M, Sohma S, Takahashi T, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H 1999 Opt. Lett. 24 1065

    [8]

    Quema A, Takahashi H, Sakai M, Goto M, Ono S, Sarukura N, Shioda R, Yamada N 2003 Jpn. J. Appl. Phys. 42 L932

    [9]

    Chen L J, Chen H W, Kao T F, Lu J Y, Sun C K 2006 Opt. Lett. 31 308

    [10]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [11]

    Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nature Nanotechnol. 6 630

    [12]

    Wang J C, Song C, Hang J, Hu Z D, Zhang F 2017 Opt. Express 25 23880

    [13]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435

    [14]

    He X Y, Kim S 2013 J. Opt. Soc. Am. B 30 2461

    [15]

    Wang J C, Wang X S, Shao H Y, Hu Z D, Zheng G G, Zhang F 2017 Nanoscale Res. Lett. 12 9

    [16]

    Donnelly C, Tan D T H 2014 Opt. Express 22 22820

    [17]

    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, Abajo F J G 2012 ACS Nano 6 431

    [18]

    Hajati M, Hajati Y 2016 Appl. Opt. 55 1878

    [19]

    Wang X S, Chen C, Pan L, Wang J C 2016 Sci. Rep. UK 6 32616

    [20]

    He S L, Zhang X Z, He Y R 2013 Opt. Express 21 30664

    [21]

    Gao Y X, Ren G B, Zhu B F, Wang J, Jian S S 2014 Opt. Lett. 39 5909

    [22]

    Yang J F, Yang J J, Deng W, Mao F C, Huang M 2015 Opt. Express 23 32289

    [23]

    Xing R, Jian S S 2016 IEEE Photon. Tech. L. 28 2779

    [24]

    Zhu B F, Ren G B, Yang Y, Gao Y X, Wu B L, Lian Y D, Wang J, Jian S S 2015 Plasmonics 10 839

    [25]

    Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M 2014 Nat. Commun. 5 3069

    [26]

    Yang H B, Qiu M, Li Q 2016 Laser Photon. Rev. 10 278

    [27]

    Wu X R, Huang C R, Xu K, Shu C, Tsang H K 2017 J. Lightwave Technol. 35 3223

    [28]

    Nikitin A Y, Guinea F, García-Vidal F J, Martín-Moreno L 2011 Phys. Rev. B 84 195446

    [29]

    Wijngaard W 1973 J. Opt. Soc. Am. 63 944

    [30]

    Wijngaard W 1974 J. Opt. Soc. Am. 64 1136

    [31]

    Huang H S, Chang H C 1990 J. Lightwave Technol. 8 945

    [32]

    Lo K M, McPhedran R C, Bassett I M, Milton G W 1994 J. Lightwave Technol. 12 396

    [33]

    White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M, Botten L C 2002 J. Opt. Soc. Am. B 19 2322

    [34]

    Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke C M, McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1625
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-05
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-05-20

基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析

  • 1. 山西大学物理电子工程学院, 太原 030006;
  • 2. 山西大学, 量子光学与光量子器件国家重点实验室, 激光光谱研究所, 太原 030006;
  • 3. 山西大学, 极端光学协同创新中心, 太原 030006
  • 通信作者: 薛文瑞, wrxue@sxu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61378039,61575115)和国家基础科学人才培养基金(批准号:J1103210)资助的课题.

摘要: 研究了一种基于涂覆石墨烯的三根电介质纳米线的THz波导,采用多极方法对这种波导所支持的5种低阶模的有效折射率的实部和传播长度进行了解析分析.结果表明,通过改变工作频率、中间纳米线半径、纳米线之间的间距以及石墨烯的费米能,可以有效地调节波导的模式特性.当工作频率从30 THz增加到40 THz时,这些模式的有效折射率的实部增大,传播长度减小,并且在变化的过程中会出现交叉现象.当中间纳米线的半径从25 nm增加到75 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部增大,传播长度变化各不相同.当纳米线之间的间距从10 nm增加到50 nm时,除了模式3和模式4基本不受影响,其他模式有效折射率的实部减小,传播长度增大,并且在变化的过程中会出现交叉现象.当石墨烯的费米能从0.4 eV增加到1.2 eV时,有效折射率的实部减小,传播长度增大.计算表明,多极法得到的结果与有限元方法得到的结果完全一致.本研究可以为基于涂覆石墨烯的电介质纳米线的THz波导的设计、制作和应用提供理论基础.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回