搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固体介质的倍频程连续光谱产生的研究进展

赵昆 许思源 江昱佼 高亦谈 刘阳阳 何鹏 滕浩 朱江峰 魏志义

基于固体介质的倍频程连续光谱产生的研究进展

赵昆, 许思源, 江昱佼, 高亦谈, 刘阳阳, 何鹏, 滕浩, 朱江峰, 魏志义
PDF
导出引用
导出核心图
  • 超快激光经过透明介质时由于非线性作用光谱会得到展宽,甚至能够产生超过一个倍频程的相干超连续光谱,这样的光源能够压缩得到几个甚至单个光周期的超短脉冲,并在现代超快科学的各个领域得到了广泛应用.实验中已经在气体、液体和固体中都观测到了光谱的展宽,目前较为成熟的方法是使用充满惰性气体的空芯光纤和具有高非线性效应的固体材料展宽光谱.但空芯光纤由于芯径限制无法用于高能量激光脉冲的光谱展宽,而固体材料又容易被高功率密度的脉冲激光损坏.随着激光技术的发展其脉冲能量不断提高,一种新的、利用多片薄固体介质实现光谱展宽的方式被提出.多片薄的非线性介质可以实现光谱展宽的逐片累积,而且避免了激光在介质中因自聚焦产生过高功率密度带来的损坏.目前使用这种方法已经在实验上得到了近毫焦尔量级的倍频程光谱,覆盖了近紫外到中红外的整个区域,并实现了脉冲压缩.本文简要回顾了超快激光在固体中光谱展宽的发展历程,概述了新型薄片固态介质产生超连续光谱的原理,对近年来使用此新方法的实验进行了简要分析,并对其发展前景进行了展望.
      通信作者: 魏志义, zywei@iphy.ac.cn
    • 基金项目: 国家自然科学基金重大项目(批准号:61690221)、国家自然科学基金重点项目(批准号:11434016)、国家自然科学基金(批准号:11574384,11674386)、国家重点研发计划(批准号:2017YFB0405202)、中国科学院仪器研制项目(批准号:YZ201658)、中国科学院前沿科学重点研究计划(批准号:QYZDJ-SSW-JSC006)和中国科学院战略性先导科技专项(B类)(批准号:XDB16030200)资助的课题.
    [1]

    Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann Ch, Sartania S, Krausz F 1997 Opt. Lett. 22 522

    [2]

    Shimizu F 1967 Phys. Rev. Lett. 19 1097

    [3]

    Bradler M, Baum P, Riedle E 2009 Appl. Phys. B 97 561

    [4]

    Bohman S, Suda A, Kanai T, Yamaguchi S, Midorikawa K 2010 Opt. Lett. 35 1887

    [5]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [6]

    Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211

    [7]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photon. 8 178

    [9]

    Mashiko H, Nakamura C M, Li C, Moon E, Wang H, Tackett J, Chang Z 2007 Appl. Phys. Lett. 90 161114

    [10]

    Yin Y, Li J, Ren X, Zhao K, Wu Y, Cunningham E, Chang Z 2016 Opt. Lett. 41 1142

    [11]

    Bradler M, Riedle E 2014 J. Opt. Soc. Am. B 31 1465

    [12]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [13]

    Humbert G, Wadsworth W J, Leon-Saval S G, Knight J C, Birks T A, Russell P S J, Lederer M J, Kopf D, Wiesauer K, Breuer E I, Stifter D 2006 Opt. Express 14 1596

    [14]

    Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641

    [15]

    Dubietis A, Tamoauskas G,uminas R, Jukna V, Couairon A 2017 Lithuanian J. Phys. 57 113

    [16]

    Silva F, Austin D, Thai A, Baudisch M, Hemmer M, Faccio D, Couairon A, Biegert J 2012 Nat. Commun. 3 807

    [17]

    Hemmer M, Baudisch M, Thai A, Couairon A, Biegert J 2013 Opt. Express 21 28095

    [18]

    Lanin A A, Voronin A A, Stepanov E A, Fedotov A B, Zheltikov A M 2015 Opt. Lett. 40 974

    [19]

    Liang H, Krogen P, Grynko R, Novak O, Chang C L, Stein G J, Weerawarne D, Shim B, Krtner F X, Hong K H 2015 Opt. Lett. 40 1069

    [20]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [21]

    Shumakova V, Malevich P, Aliauskas S, Voronin A, Zheltikov A M, Faccio D, Kartashov D, Baltuka A, Pugžlys A 2016 Nat. Commun. 7 12877

    [22]

    Petrov V, Rudolph W, Wilhelmi B 1989 J. Mod. Opt. 36 587

    [23]

    Krebs N, Pugliesi I, Riedle E 2013 Appl. Sci. 3 153

    [24]

    Vlasov S N, Koposova E V, Yashin V E 2012 Quantum Electron. 42 989

    [25]

    Lu C, Tsou Y, Chen H, Chen B, Cheng Y, Yang S, Chen M, Hsu C, Kung A 2014 Optica 1 400

    [26]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474

    [27]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592

    [28]

    Yang G, Shen Y R 1984 Opt. Lett. 9 510

    [29]

    Rothenberg J E 1992 Opt. Lett. 17 1340

    [30]

    Gustafson T K, Taran J P, Haus H A, Lifsitz J R, Kelley P L 1969 Phys. Rev. 177 306

    [31]

    Siegman A 1986 Lasers (Sausalito:University Science Books) Ch. 10

    [32]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [33]

    Alfano R R 2016 The Supercontinuum Laser Source (3rd Ed.) (New York:Springer)

    [34]

    Centurion M, Porter M A, Kevrekidis P G, Psaltis D 2006 Phys. Rev. Lett. 97 033903

    [35]

    Voronin A A, Zheltikov A M, Ditmire T, Rus B, Korn G 2013 Opt. Commun. 291 299

    [36]

    Cheng Y C, Lu C H, Lin Y Y, Kung A H 2016 Opt. Express 24 7224

    [37]

    Seidel M, Arisholm G, Brons J, Pervak V, Pronin O 2016 Opt. Express 24 9412

    [38]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [39]

    Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017 Chin. Phys. Lett. 34 074204

    [40]

    Beetar J E, Gholam-Mirzaei S, Chini M 2018 Appl. Phys. Lett. 112 051102

    [41]

    Budriūnas R, Kučinskas D, Varanavičius A 2017 Appl. Phys. B 123 212

  • [1]

    Nisoli M, de Silvestri S, Svelto O, Szipcs R, Ferencz K, Spielmann Ch, Sartania S, Krausz F 1997 Opt. Lett. 22 522

    [2]

    Shimizu F 1967 Phys. Rev. Lett. 19 1097

    [3]

    Bradler M, Baum P, Riedle E 2009 Appl. Phys. B 97 561

    [4]

    Bohman S, Suda A, Kanai T, Yamaguchi S, Midorikawa K 2010 Opt. Lett. 35 1887

    [5]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545

    [6]

    Zhang W, Teng H, Yun C X, Zhong X, Hou X, Wei Z Y 2010 Chin. Phys. Lett. 27 054211

    [7]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photon. 8 178

    [9]

    Mashiko H, Nakamura C M, Li C, Moon E, Wang H, Tackett J, Chang Z 2007 Appl. Phys. Lett. 90 161114

    [10]

    Yin Y, Li J, Ren X, Zhao K, Wu Y, Cunningham E, Chang Z 2016 Opt. Lett. 41 1142

    [11]

    Bradler M, Riedle E 2014 J. Opt. Soc. Am. B 31 1465

    [12]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

    [13]

    Humbert G, Wadsworth W J, Leon-Saval S G, Knight J C, Birks T A, Russell P S J, Lederer M J, Kopf D, Wiesauer K, Breuer E I, Stifter D 2006 Opt. Express 14 1596

    [14]

    Rolland C, Corkum P B 1988 J. Opt. Soc. Am. B 5 641

    [15]

    Dubietis A, Tamoauskas G,uminas R, Jukna V, Couairon A 2017 Lithuanian J. Phys. 57 113

    [16]

    Silva F, Austin D, Thai A, Baudisch M, Hemmer M, Faccio D, Couairon A, Biegert J 2012 Nat. Commun. 3 807

    [17]

    Hemmer M, Baudisch M, Thai A, Couairon A, Biegert J 2013 Opt. Express 21 28095

    [18]

    Lanin A A, Voronin A A, Stepanov E A, Fedotov A B, Zheltikov A M 2015 Opt. Lett. 40 974

    [19]

    Liang H, Krogen P, Grynko R, Novak O, Chang C L, Stein G J, Weerawarne D, Shim B, Krtner F X, Hong K H 2015 Opt. Lett. 40 1069

    [20]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47

    [21]

    Shumakova V, Malevich P, Aliauskas S, Voronin A, Zheltikov A M, Faccio D, Kartashov D, Baltuka A, Pugžlys A 2016 Nat. Commun. 7 12877

    [22]

    Petrov V, Rudolph W, Wilhelmi B 1989 J. Mod. Opt. 36 587

    [23]

    Krebs N, Pugliesi I, Riedle E 2013 Appl. Sci. 3 153

    [24]

    Vlasov S N, Koposova E V, Yashin V E 2012 Quantum Electron. 42 989

    [25]

    Lu C, Tsou Y, Chen H, Chen B, Cheng Y, Yang S, Chen M, Hsu C, Kung A 2014 Optica 1 400

    [26]

    He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X, Wei Z Y 2017 Opt. Lett. 42 474

    [27]

    Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 592

    [28]

    Yang G, Shen Y R 1984 Opt. Lett. 9 510

    [29]

    Rothenberg J E 1992 Opt. Lett. 17 1340

    [30]

    Gustafson T K, Taran J P, Haus H A, Lifsitz J R, Kelley P L 1969 Phys. Rev. 177 306

    [31]

    Siegman A 1986 Lasers (Sausalito:University Science Books) Ch. 10

    [32]

    Fork R L, Shank C V, Hirlimann C, Yen R, Tomlinson W J 1983 Opt. Lett. 8 1

    [33]

    Alfano R R 2016 The Supercontinuum Laser Source (3rd Ed.) (New York:Springer)

    [34]

    Centurion M, Porter M A, Kevrekidis P G, Psaltis D 2006 Phys. Rev. Lett. 97 033903

    [35]

    Voronin A A, Zheltikov A M, Ditmire T, Rus B, Korn G 2013 Opt. Commun. 291 299

    [36]

    Cheng Y C, Lu C H, Lin Y Y, Kung A H 2016 Opt. Express 24 7224

    [37]

    Seidel M, Arisholm G, Brons J, Pervak V, Pronin O 2016 Opt. Express 24 9412

    [38]

    Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett. 22 519

    [39]

    Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017 Chin. Phys. Lett. 34 074204

    [40]

    Beetar J E, Gholam-Mirzaei S, Chini M 2018 Appl. Phys. Lett. 112 051102

    [41]

    Budriūnas R, Kučinskas D, Varanavičius A 2017 Appl. Phys. B 123 212

  • [1] 刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义. 基于固体薄片超连续飞秒光源驱动的高次谐波产生实验. 物理学报, 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [2] 贾玉磊, 朱政, 韩海年, 田文龙, 谢阳, 张龙, 魏志义. 掺镱硼酸钙氧钇飞秒激光器及在拉锥光纤中产生跨倍频程超连续光. 物理学报, 2015, 64(5): 054206. doi: 10.7498/aps.64.054206
    [3] 颜国君, 陈光德, 伍叶龙, 杨建清. 双折射吸收非线性介质薄膜中倍频的产生. 物理学报, 2008, 57(1): 265-270. doi: 10.7498/aps.57.265
    [4] 陈伟, 曹迎春, 杨振宇, 陆培祥, 季玲玲. 双折射光子晶体光纤中基于孤子分裂的超连续光谱产生. 物理学报, 2009, 58(8): 5462-5466. doi: 10.7498/aps.58.5462
    [5] 胡明列, 王清月, 栗岩峰, 王 专, 张志刚, 柴 路, 章若冰. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究. 物理学报, 2004, 53(12): 4243-4247. doi: 10.7498/aps.53.4243
    [6] 王 专, 王清月, 韩英魁, 曹士英, 张志刚, 柴 路. 直接从钛宝石激光器获得超连续光谱. 物理学报, 2004, 53(10): 3375-3378. doi: 10.7498/aps.53.3375
    [7] 宋锐, 侯静, 陈胜平, 王彦斌, 陆启生. 177.6 W全光纤超连续谱光源. 物理学报, 2012, 61(5): 054217. doi: 10.7498/aps.61.054217
    [8] 李钱光, 易煦农, 张秀, 吕昊, 丁么明. 双色场驱动不对称分子气体产生平台区超连续光谱. 物理学报, 2011, 60(1): 017203. doi: 10.7498/aps.60.017203
    [9] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究. 物理学报, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [10] 高金峰, 罗先觉, 马西奎. 实现连续时间标量(超)混沌信号同步控制的非线性反馈方法. 物理学报, 2000, 49(5): 838-843. doi: 10.7498/aps.49.838
    [11] 邱巍, 吕品, 马英驰, 徐晓娟, 刘典, 张程华. 均匀展宽增益介质中超光速饱和现象的研究. 物理学报, 2012, 61(10): 104209. doi: 10.7498/aps.61.104209
    [12] 于凌尧, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬, 尹君. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究. 物理学报, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [13] 谌鸿伟, 郭良, 靳爱军, 陈胜平, 侯静, 陆启生. 基于光子晶体光纤的百瓦量级超连续谱光源研究. 物理学报, 2013, 62(15): 154207. doi: 10.7498/aps.62.154207
    [14] 刘双龙, 陈丹妮, 刘伟, 牛憨笨. 基于全正色散光子晶体光纤的超连续谱光源. 物理学报, 2013, 62(18): 184210. doi: 10.7498/aps.62.184210
    [15] 马军, 吴信谊, 秦会欣. 非连续的线性耦合方法实现超混沌系统的同步. 物理学报, 2013, 62(17): 170502. doi: 10.7498/aps.62.170502
    [16] 刘卫华, 彭钦军, 许祖彦, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [17] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [18] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
    [19] 张 艳, 文 侨, 张 彬. 部分相干平顶光束在线性增益(损耗)介质中的光谱特性. 物理学报, 2006, 55(9): 4962-4967. doi: 10.7498/aps.55.4962
    [20] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究. 物理学报, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
  • 引用本文:
    Citation:
计量
  • 文章访问数:  333
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-05-09
  • 刊出日期:  2018-06-20

基于固体介质的倍频程连续光谱产生的研究进展

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;
  • 2. 西安电子科技大学物理与光电工程学院, 西安 710071;
  • 3. 中国科学院大学, 北京 100049
  • 通信作者: 魏志义, zywei@iphy.ac.cn
    基金项目: 

    国家自然科学基金重大项目(批准号:61690221)、国家自然科学基金重点项目(批准号:11434016)、国家自然科学基金(批准号:11574384,11674386)、国家重点研发计划(批准号:2017YFB0405202)、中国科学院仪器研制项目(批准号:YZ201658)、中国科学院前沿科学重点研究计划(批准号:QYZDJ-SSW-JSC006)和中国科学院战略性先导科技专项(B类)(批准号:XDB16030200)资助的课题.

摘要: 超快激光经过透明介质时由于非线性作用光谱会得到展宽,甚至能够产生超过一个倍频程的相干超连续光谱,这样的光源能够压缩得到几个甚至单个光周期的超短脉冲,并在现代超快科学的各个领域得到了广泛应用.实验中已经在气体、液体和固体中都观测到了光谱的展宽,目前较为成熟的方法是使用充满惰性气体的空芯光纤和具有高非线性效应的固体材料展宽光谱.但空芯光纤由于芯径限制无法用于高能量激光脉冲的光谱展宽,而固体材料又容易被高功率密度的脉冲激光损坏.随着激光技术的发展其脉冲能量不断提高,一种新的、利用多片薄固体介质实现光谱展宽的方式被提出.多片薄的非线性介质可以实现光谱展宽的逐片累积,而且避免了激光在介质中因自聚焦产生过高功率密度带来的损坏.目前使用这种方法已经在实验上得到了近毫焦尔量级的倍频程光谱,覆盖了近紫外到中红外的整个区域,并实现了脉冲压缩.本文简要回顾了超快激光在固体中光谱展宽的发展历程,概述了新型薄片固态介质产生超连续光谱的原理,对近年来使用此新方法的实验进行了简要分析,并对其发展前景进行了展望.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回