搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非连续的线性耦合方法实现超混沌系统的同步

马军 吴信谊 秦会欣

非连续的线性耦合方法实现超混沌系统的同步

马军, 吴信谊, 秦会欣
PDF
导出引用
导出核心图
  • 基于李亚普诺夫稳定性理论, 严格证明了一类超混沌系统在间歇线性单向耦合下可以实现完全同步. 线性控制器通过一个开关函数来调节来实现‘停’和‘控’. 第一类开关函数由一个等幅度矩形波来控制, 控制器的打开和关闭选取不同的间隔周期(Ta, Tb); 第二类开关函数由一个等幅度方波来控制, 方波间隔周期记为T0; 首先通过构造指数类型的李亚普诺夫论证了两类开关函数调制下两个超混沌 系统在单向线性耦合下实现同步的可行性问题. 为了定量分析控制效果, 定义了一定周期内控制器的平均能耗. 在数值计算中, 对第一类矩形波函数情形则计算了二参数空间(Ta, Tb)下响应系统的最大李亚普诺夫指数分布, 同步区域/非同步区域分布, 控制器平均能耗分布, 确认在恰当的间隔周期(Ta, Tb)和耦合强度下,两个超混沌系统可以达到完全同步. 对第二类方波函数情形则计算了耦合强度和方波间隔周期T0而参 数区域内响应系统最大条件李亚普诺夫指数分布, 给定耦合强度下选择不同间隔周期下误差函数演化和平均能耗, 研究结果表明: 在恰当的耦合强度和间隔周期T0下两个超混沌系统可以达到完全同步. 同时发现, 在恰当的耦合强度下控制器的平均能耗最小, 数值计算结果验证了理论分析的可靠性.
    • 基金项目: 国家自然科学基金(批准号: 11265008)资助的课题.
    [1]

    Boccaletti S, Grebogi C, Lai Y C 2000 Phys. Rep. 329 103

    [2]

    Perc M, Marhl M 2003 Biophys Chem. 104 509

    [3]

    Li Q D, Yang X S 2003 Electron Lett. 39 1306

    [4]

    Kodba S, Perc M, Marhl M 2005 Eur. J. Phys. 26 205

    [5]

    Krese B, Perc M, Govekar E 2010 Chaos 20 013129

    [6]

    Alsing P M, Gavrielides A, Kovanis V 1997 Phys. Rev. E 56 6302

    [7]

    VanWiggeren G D, Roy R 1998 Science 279 1198

    [8]

    Xia W, Cao J D 2008 Chaos 18 023128

    [9]

    Wu D, Li J J 2010 Chin. Phys. B 19 120505

    [10]

    Wang X Y, Zhang N, Ren X L 2011 Chin. Phys. B 20 020507

    [11]

    Boccaletti S, Kurths J, Osipov G 2002 Phys. Rep. 366 1

    [12]

    DeShazer D J, Breban R, Ott E 2004 Int. J. Bifurcat Chaos 14 3205

    [13]

    Lu J G, Xi Y G, Wang X F 2004 Int. J. Bifurcat Chaos 14 1431

    [14]

    Kim M Y, Sramek C, Uchida A 2006 Phys. Rev. E 74 016211

    [15]

    Lu J G, Hill D J 2008 IEEE Trans Circ. Syst. II 55 586

    [16]

    Cao J D, Ho W C, Yang Y 2009 Phys. Lett. A 373 3128

    [17]

    Lu J, Cao J D, Ho W C 2008 IEEE Trans Circ. Syst. I 55 1347

    [18]

    Yu W, Cao J D 2007 Physica A 375 467

    [19]

    Guan J B 2010 Chin. Phys. Lett. 27 020502

    [20]

    Feng Y F, Zhang Q L 2010 Chin. Phys. B 19 120504

    [21]

    Li S Y, Ge Z M 2011 Nonlinear Dynam 64 77

    [22]

    Wang Z L, Shi X R 2011 Commun. Nonlinear Sci. Numer Simulat 16 46

    [23]

    Wang C N, Ma J, Jin W Y 2012 Dynam Syst. 27253

    [24]

    Wang T B, Qin T F, Chen G Z 2001 Acta Phys. Sin. 50 1851 (in Chinese) [王铁邦, 覃团发, 陈光旨 2001 物理学报 50 1851]

    [25]

    Jiang P Q, Luo X S, Wang B H 2002 Acta Phys. Sin. 51 1937 (in Chinese) [蒋品群, 罗晓曙, 汪秉宏 2002 物理学报 51 1937]

    [26]

    Ma J, Liao G H, Mo X H 2005 Acta Phys. Sin. 54 5585 (in Chinese) [马军, 廖高华, 莫晓华 2005 物理学报 54 5585]

    [27]

    Sarasola C, Torrealdea F J, d’Anjou A 2002 Math Comput Simulat 58 309

    [28]

    Li F, Jin W Y, Ma J 2012 Acta Phys. Sin. 61 240501 (in Chinese) [李凡, 靳伍银, 马军 2012 物理学报 61 240501]

    [29]

    Tamaševičius A, Namajūnas A, Čenys A 1996 Electron Lett. 32 957

    [30]

    Yalçin M E 2007 Chaos, Solitons & Fractals 34 1659

    [31]

    Li N, Li J F 2011 Acta Phys. Sin. 60 110512 (in Chinese) [李农, 李建芬 2011 物理学报 60 110512]

    [32]

    L J H, Chen G R, Yu X G, Leung H 2004 IEEE Trans Circ. Sys. I 51 2476

    [33]

    Yu S M, Lin Q H, Qiu S S 2003 Acta Phys. Sin. 52 25 (in Chinese) [禹思敏, 林清华, 丘水生 2003 物理学报 52 25]

    [34]

    Yu S M 2005 Acta Phys. Sin. 54 1500 (in Chinese) [禹思敏 2005 物理学报 54 1500]

    [35]

    Wang F Q, Liu C X, Lu J J 2006 Acta Phys. Sin. 55 3289 (in Chinese) [王发强, 刘崇新, 逯俊杰 2006 物理学报 55 3289]

    [36]

    L J H, Chen G R 2006 Int. J. Bifurcat. Chaos 16 775

    [37]

    Wang F Q, Liu C X 2007 Acta Phys. Sin. 56 1983 (in Chinese) [王发强, 刘崇新 2007 物理学报 56 1983 ]

    [38]

    Chen L, Peng H J, Wang D S 2008 Acta Phys. Sin. 57 3337 (in Chinese) [谌 龙, 彭海军, 王德石 2008 物理学报 57 3337 ]

    [39]

    Hu G S 2009 Acta Phys. Sin. 58 3734 (in Chinese) [胡国四 2009 物理学报 58 3734 ]

    [40]

    Bao B C, Liu Z, Xu J P, Zhu L 2010 Acta Phys. Sin. 59 1540 (in Chinese) [包伯成, 刘中, 许建平, 朱雷 2010 物理学报 59 1540]

    [41]

    Chen S B, Ceng Y C, Xu M L, Chen J S 2011 Acta Phys. Sin. 60 020507 (in Chinese) [陈仕必, 曾以成, 徐茂林, 陈家胜 2011 物理学报 60 020507]

    [42]

    Lin Y, Wang C Y, Xu H 2012 Acta Phys. Sin. 61 240503 (in Chinese) [林愿, 王春华, 徐浩 2012 物理学报 61 240503]

  • [1]

    Boccaletti S, Grebogi C, Lai Y C 2000 Phys. Rep. 329 103

    [2]

    Perc M, Marhl M 2003 Biophys Chem. 104 509

    [3]

    Li Q D, Yang X S 2003 Electron Lett. 39 1306

    [4]

    Kodba S, Perc M, Marhl M 2005 Eur. J. Phys. 26 205

    [5]

    Krese B, Perc M, Govekar E 2010 Chaos 20 013129

    [6]

    Alsing P M, Gavrielides A, Kovanis V 1997 Phys. Rev. E 56 6302

    [7]

    VanWiggeren G D, Roy R 1998 Science 279 1198

    [8]

    Xia W, Cao J D 2008 Chaos 18 023128

    [9]

    Wu D, Li J J 2010 Chin. Phys. B 19 120505

    [10]

    Wang X Y, Zhang N, Ren X L 2011 Chin. Phys. B 20 020507

    [11]

    Boccaletti S, Kurths J, Osipov G 2002 Phys. Rep. 366 1

    [12]

    DeShazer D J, Breban R, Ott E 2004 Int. J. Bifurcat Chaos 14 3205

    [13]

    Lu J G, Xi Y G, Wang X F 2004 Int. J. Bifurcat Chaos 14 1431

    [14]

    Kim M Y, Sramek C, Uchida A 2006 Phys. Rev. E 74 016211

    [15]

    Lu J G, Hill D J 2008 IEEE Trans Circ. Syst. II 55 586

    [16]

    Cao J D, Ho W C, Yang Y 2009 Phys. Lett. A 373 3128

    [17]

    Lu J, Cao J D, Ho W C 2008 IEEE Trans Circ. Syst. I 55 1347

    [18]

    Yu W, Cao J D 2007 Physica A 375 467

    [19]

    Guan J B 2010 Chin. Phys. Lett. 27 020502

    [20]

    Feng Y F, Zhang Q L 2010 Chin. Phys. B 19 120504

    [21]

    Li S Y, Ge Z M 2011 Nonlinear Dynam 64 77

    [22]

    Wang Z L, Shi X R 2011 Commun. Nonlinear Sci. Numer Simulat 16 46

    [23]

    Wang C N, Ma J, Jin W Y 2012 Dynam Syst. 27253

    [24]

    Wang T B, Qin T F, Chen G Z 2001 Acta Phys. Sin. 50 1851 (in Chinese) [王铁邦, 覃团发, 陈光旨 2001 物理学报 50 1851]

    [25]

    Jiang P Q, Luo X S, Wang B H 2002 Acta Phys. Sin. 51 1937 (in Chinese) [蒋品群, 罗晓曙, 汪秉宏 2002 物理学报 51 1937]

    [26]

    Ma J, Liao G H, Mo X H 2005 Acta Phys. Sin. 54 5585 (in Chinese) [马军, 廖高华, 莫晓华 2005 物理学报 54 5585]

    [27]

    Sarasola C, Torrealdea F J, d’Anjou A 2002 Math Comput Simulat 58 309

    [28]

    Li F, Jin W Y, Ma J 2012 Acta Phys. Sin. 61 240501 (in Chinese) [李凡, 靳伍银, 马军 2012 物理学报 61 240501]

    [29]

    Tamaševičius A, Namajūnas A, Čenys A 1996 Electron Lett. 32 957

    [30]

    Yalçin M E 2007 Chaos, Solitons & Fractals 34 1659

    [31]

    Li N, Li J F 2011 Acta Phys. Sin. 60 110512 (in Chinese) [李农, 李建芬 2011 物理学报 60 110512]

    [32]

    L J H, Chen G R, Yu X G, Leung H 2004 IEEE Trans Circ. Sys. I 51 2476

    [33]

    Yu S M, Lin Q H, Qiu S S 2003 Acta Phys. Sin. 52 25 (in Chinese) [禹思敏, 林清华, 丘水生 2003 物理学报 52 25]

    [34]

    Yu S M 2005 Acta Phys. Sin. 54 1500 (in Chinese) [禹思敏 2005 物理学报 54 1500]

    [35]

    Wang F Q, Liu C X, Lu J J 2006 Acta Phys. Sin. 55 3289 (in Chinese) [王发强, 刘崇新, 逯俊杰 2006 物理学报 55 3289]

    [36]

    L J H, Chen G R 2006 Int. J. Bifurcat. Chaos 16 775

    [37]

    Wang F Q, Liu C X 2007 Acta Phys. Sin. 56 1983 (in Chinese) [王发强, 刘崇新 2007 物理学报 56 1983 ]

    [38]

    Chen L, Peng H J, Wang D S 2008 Acta Phys. Sin. 57 3337 (in Chinese) [谌 龙, 彭海军, 王德石 2008 物理学报 57 3337 ]

    [39]

    Hu G S 2009 Acta Phys. Sin. 58 3734 (in Chinese) [胡国四 2009 物理学报 58 3734 ]

    [40]

    Bao B C, Liu Z, Xu J P, Zhu L 2010 Acta Phys. Sin. 59 1540 (in Chinese) [包伯成, 刘中, 许建平, 朱雷 2010 物理学报 59 1540]

    [41]

    Chen S B, Ceng Y C, Xu M L, Chen J S 2011 Acta Phys. Sin. 60 020507 (in Chinese) [陈仕必, 曾以成, 徐茂林, 陈家胜 2011 物理学报 60 020507]

    [42]

    Lin Y, Wang C Y, Xu H 2012 Acta Phys. Sin. 61 240503 (in Chinese) [林愿, 王春华, 徐浩 2012 物理学报 61 240503]

  • [1] 孙 琳, 姜德平. 驱动函数切换调制实现超混沌数字保密通信. 物理学报, 2006, 55(7): 3283-3288. doi: 10.7498/aps.55.3283
    [2] 费树岷, 刘扬正. Sprott-B和Sprott-C系统之间的耦合混沌同步. 物理学报, 2006, 55(3): 1035-1039. doi: 10.7498/aps.55.1035
    [3] 岳丽娟, 陈艳艳, 彭建华. 用系统变量比例脉冲方法控制超混沌的电路实验研究. 物理学报, 2001, 50(11): 2097-2102. doi: 10.7498/aps.50.2097
    [4] 于洪洁, 刘延柱. 对称非线性耦合混沌系统的同步. 物理学报, 2005, 54(7): 3029-3033. doi: 10.7498/aps.54.3029
    [5] 覃团发, 王铁邦, 陈光旨. 超混沌系统的耦合同步. 物理学报, 2001, 50(10): 1851-1855. doi: 10.7498/aps.50.1851
    [6] 张胜海, 杨 华, 钱兴中. 一种控制掺铒光纤激光器超混沌的方法——非线性延时反馈参数调制法. 物理学报, 2004, 53(11): 3706-3709. doi: 10.7498/aps.53.3706
    [7] 廖旎焕, 高金峰, 姚利娜. 实现混沌系统同步的非线性状态观测器方法. 物理学报, 2006, 55(1): 35-41. doi: 10.7498/aps.55.35
    [8] 郭晶, 王钺, 山秀明, 任勇. 时空混沌中的序图样研究. 物理学报, 2010, 59(11): 7663-7668. doi: 10.7498/aps.59.7663
    [9] 李凡, 靳伍银, 马军. 非线性耦合对线性耦合同步的调制研究. 物理学报, 2012, 61(24): 240501. doi: 10.7498/aps.61.240501
    [10] 王兴元, 王明军. 超混沌Lorenz系统. 物理学报, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [11] 莫晓华, 张平伟, 廖高华, 马 军, 李维学. 超混沌系统的间歇同步与控制. 物理学报, 2005, 54(12): 5585-5590. doi: 10.7498/aps.54.5585
    [12] 冯久超, 刘明华. 一个新的超混沌系统. 物理学报, 2009, 58(7): 4457-4462. doi: 10.7498/aps.58.4457
    [13] 王 森, 马西奎, 蔡 理. 量子细胞神经网络的超混沌特性研究. 物理学报, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [14] 陈增强, 袁著祉, 仓诗建. 一个新四维非自治超混沌系统的分析与电路实现. 物理学报, 2008, 57(3): 1493-1501. doi: 10.7498/aps.57.1493
    [15] 李亚, 张正明, 陶志杰. 一个超混沌六阶蔡氏电路及其硬件实现. 物理学报, 2009, 58(10): 6818-6822. doi: 10.7498/aps.58.6818
    [16] 胡建兵, 韩焱, 赵灵冬. 自适应同步参数未知的异结构分数阶超混沌系统. 物理学报, 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [17] 王兴元, 孟娟. 基于Takagi-Sugeno模糊模型的超混沌系统自适应投影同步及参数辨识. 物理学报, 2009, 58(6): 3780-3787. doi: 10.7498/aps.58.3780
    [18] 陈增强, 袁著祉, 贾红艳. 一个大范围超混沌系统的生成和电路实现. 物理学报, 2009, 58(7): 4469-4476. doi: 10.7498/aps.58.4469
    [19] 赵灵冬, 胡建兵, 刘旭辉. 参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步. 物理学报, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [20] 王静, 蒋国平. 一种超混沌图像加密算法的安全性分析及其改进. 物理学报, 2011, 60(6): 060503. doi: 10.7498/aps.60.060503
  • 引用本文:
    Citation:
计量
  • 文章访问数:  705
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-18
  • 修回日期:  2013-05-15
  • 刊出日期:  2013-09-05

非连续的线性耦合方法实现超混沌系统的同步

  • 1. 兰州理工大学物理系, 兰州 730050
    基金项目: 

    国家自然科学基金(批准号: 11265008)资助的课题.

摘要: 基于李亚普诺夫稳定性理论, 严格证明了一类超混沌系统在间歇线性单向耦合下可以实现完全同步. 线性控制器通过一个开关函数来调节来实现‘停’和‘控’. 第一类开关函数由一个等幅度矩形波来控制, 控制器的打开和关闭选取不同的间隔周期(Ta, Tb); 第二类开关函数由一个等幅度方波来控制, 方波间隔周期记为T0; 首先通过构造指数类型的李亚普诺夫论证了两类开关函数调制下两个超混沌 系统在单向线性耦合下实现同步的可行性问题. 为了定量分析控制效果, 定义了一定周期内控制器的平均能耗. 在数值计算中, 对第一类矩形波函数情形则计算了二参数空间(Ta, Tb)下响应系统的最大李亚普诺夫指数分布, 同步区域/非同步区域分布, 控制器平均能耗分布, 确认在恰当的间隔周期(Ta, Tb)和耦合强度下,两个超混沌系统可以达到完全同步. 对第二类方波函数情形则计算了耦合强度和方波间隔周期T0而参 数区域内响应系统最大条件李亚普诺夫指数分布, 给定耦合强度下选择不同间隔周期下误差函数演化和平均能耗, 研究结果表明: 在恰当的耦合强度和间隔周期T0下两个超混沌系统可以达到完全同步. 同时发现, 在恰当的耦合强度下控制器的平均能耗最小, 数值计算结果验证了理论分析的可靠性.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回