搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米片大自旋特性第一性原理研究

张淑亭 孙志 赵磊

石墨烯纳米片大自旋特性第一性原理研究

张淑亭, 孙志, 赵磊
PDF
导出引用
导出核心图
  • 通过基于密度泛函理论的全电子数值轨道第一性原理电子结构计算,研究了各种形状有限石墨烯片段(石墨烯纳米片,GNF)的磁特性,证明GNF的自旋磁有序来源于由其形状决定的键拓扑挫折(topological frustration)作用.锯齿形边缘的三角形GNF的净自旋不为零,如同一个人造铁磁性原子团,总自旋随尺度线性增加.根据拓扑挫折原理,可以在GNF中引入较大的净自旋和独特的自旋分布,如由三角形GNF单元构成的复杂分形结构,总自旋随分形级数呈指数上升.通过刻蚀技术制作具有一定拓扑结构的GNF可以实现可控自旋电子纳米材料和器件应用.
      通信作者: 孙志, sunzhihust@sohu.com
    • 基金项目: 黑龙江省自然科学基金(批准号:QC2015C063)和中国博士后科学基金(批准号:2013M531058)资助的课题.
    [1]

    Jabar A, Masrour R 2017 Superlattice. Microst. 112 541

    [2]

    Masrour R, Jabar A 2018 Physica A 497 211

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [5]

    Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Jellal A 2016 Phys. Lett. A 380 1514

    [8]

    Lai W C, Wang Z M, Li Y L, Wang X, Liu Y, Liu X Y 2018 J. Phys. Chem. C 122 8473

    [9]

    Ding Y, Wang Y 2017 J. Mater. Chem. C 5 10728

    [10]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [11]

    Chuang C, Roy P, Ravindranath R, Periasamy A P, Chang H T, Liang C T 2016 Mater. Lett. 170 110

    [12]

    Xie H, Lu W C, Zhang W, Qin P H, Wang C Z, Ho K M 2013 Chem. Phys. Lett. 572 48

    [13]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [14]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [15]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [16]

    Khler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [17]

    Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406

    [19]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [20]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [21]

    Edwards D M, Katsnelson M I 2006 J. Phys. B 18 7209

    [22]

    Zha X H, Ren J C, Feng L, Bai X J, Luo K, Zhang Y Q, He J, Huang Q, Franciscod J S, Du S Y 2018 Nanoscale 10 8763

    [23]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [24]

    Fairbrother A, Ramon J, Valencia S, Lauber B, Shorubalko I, Ruffieux P, Hintermann T, Fasel R 2017 Nanoscale 9 2785

    [25]

    Jiang D E, Sumpter B G, Dai S 2007 J. Chem. Phys. 126 124701

    [26]

    Li F, Li T, Chen F, Zhang F P 2015 Sci. Rep. 5 9355

    [27]

    Ezawa M 2008 Physica E 40 1421

    [28]

    Fernndez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [29]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

  • [1]

    Jabar A, Masrour R 2017 Superlattice. Microst. 112 541

    [2]

    Masrour R, Jabar A 2018 Physica A 497 211

    [3]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [4]

    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60

    [5]

    Berger C, Song Z, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A 2006 Science 312 1191

    [6]

    Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K 2007 Science 315 1379

    [7]

    Jellal A 2016 Phys. Lett. A 380 1514

    [8]

    Lai W C, Wang Z M, Li Y L, Wang X, Liu Y, Liu X Y 2018 J. Phys. Chem. C 122 8473

    [9]

    Ding Y, Wang Y 2017 J. Mater. Chem. C 5 10728

    [10]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [11]

    Chuang C, Roy P, Ravindranath R, Periasamy A P, Chang H T, Liang C T 2016 Mater. Lett. 170 110

    [12]

    Xie H, Lu W C, Zhang W, Qin P H, Wang C Z, Ho K M 2013 Chem. Phys. Lett. 572 48

    [13]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [14]

    Hod O, Barone V, Peralta J E, Scuseria G E 2007 Nano Lett. 7 2295

    [15]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [16]

    Khler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [17]

    Andzelm J, King-Smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406

    [19]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [20]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [21]

    Edwards D M, Katsnelson M I 2006 J. Phys. B 18 7209

    [22]

    Zha X H, Ren J C, Feng L, Bai X J, Luo K, Zhang Y Q, He J, Huang Q, Franciscod J S, Du S Y 2018 Nanoscale 10 8763

    [23]

    Trauzettel B, Bulaev D V, Loss D, Burkard G 2007 Nat. Phys. 3 192

    [24]

    Fairbrother A, Ramon J, Valencia S, Lauber B, Shorubalko I, Ruffieux P, Hintermann T, Fasel R 2017 Nanoscale 9 2785

    [25]

    Jiang D E, Sumpter B G, Dai S 2007 J. Chem. Phys. 126 124701

    [26]

    Li F, Li T, Chen F, Zhang F P 2015 Sci. Rep. 5 9355

    [27]

    Ezawa M 2008 Physica E 40 1421

    [28]

    Fernndez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [29]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

  • [1] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [2] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究. 物理学报, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [3] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [4] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [5] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [6] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [7] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [8] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [9] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [10] 于冬琪, 张朝晖. 带状碳单层与石墨基底之间相互作用的第一性原理计算. 物理学报, 2011, 60(3): 036104. doi: 10.7498/aps.60.036104
    [11] 明 星, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗, 范厚刚. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [12] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [13] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [14] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究. 物理学报, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [15] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [16] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [17] 郭 进, 黎光旭, 黄 丹, 邵元智, 陈弟虎. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [18] 胡方, 明星, 陈岗, 王春忠, 魏英进, 黄祖飞, 范厚刚. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [19] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [20] 高攀, 柳清菊, 张学军. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
  • 引用本文:
    Citation:
计量
  • 文章访问数:  281
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-02
  • 修回日期:  2018-06-04
  • 刊出日期:  2018-09-20

石墨烯纳米片大自旋特性第一性原理研究

  • 1. 哈尔滨理工大学电气与电子工程学院, 工程电介质及其应用教育部重点实验室, 黑龙江省电介质工程重点实验室, 哈尔滨 150080
  • 通信作者: 孙志, sunzhihust@sohu.com
    基金项目: 

    黑龙江省自然科学基金(批准号:QC2015C063)和中国博士后科学基金(批准号:2013M531058)资助的课题.

摘要: 通过基于密度泛函理论的全电子数值轨道第一性原理电子结构计算,研究了各种形状有限石墨烯片段(石墨烯纳米片,GNF)的磁特性,证明GNF的自旋磁有序来源于由其形状决定的键拓扑挫折(topological frustration)作用.锯齿形边缘的三角形GNF的净自旋不为零,如同一个人造铁磁性原子团,总自旋随尺度线性增加.根据拓扑挫折原理,可以在GNF中引入较大的净自旋和独特的自旋分布,如由三角形GNF单元构成的复杂分形结构,总自旋随分形级数呈指数上升.通过刻蚀技术制作具有一定拓扑结构的GNF可以实现可控自旋电子纳米材料和器件应用.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回