搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法

李树

光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法

李树
PDF
导出引用
  • 高温全电离等离子体的辐射输运问题中,光子与电子的Compton散射与逆Compton散射是其中重要的特性,光子与相对论麦克斯韦电子散射的描述及截面的计算非常复杂且费时.本文提出了一种用于模拟计算光子与相对论麦克斯韦速度分布电子散射截面的蒙特卡罗计算方法.给出了各步骤的具体实现办法,推导了对应的计算公式,研究了相对论电子速率抽样方法,编写了光子与相对论电子散射的微观截面的蒙特卡罗计算程序.开展了高温全电离等离子体中,不同能量光子与不同温度电子散射的微观散射截面计算和分析.模拟计算结果显示,在电子温度低于25 keV情况下,本文方法与多重数值积分方法的计算结果非常接近;但随着电子温度继续升高,二者差异逐渐增大并较明显,经分析,可能是本文方法目前的电子速率抽样偏差所致,希望将来能够找到更好的相对论电子速率抽样方法以克服此缺陷.
      通信作者: 李树, li_shu@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11775033,11775030)和中国工程物理研究院于敏基金(批准号:FZ025)资助的课题.
    [1]

    Yu M 1996 Selected Papers of Yu Min (Beijing: Institute of Applied Physics and Computational Mathematics) p102 (in Chinese)[于敏 1996 于敏论文集(北京: 北京应用物理与计算数学研究所) 第102页]

    [2]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p183

    [3]

    Evans R D 1955 The Atomic Nucleus (New York: McGraw-Hill Press) p677

    [4]

    Lux I, Koblinger L 1991 Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (Boston: CRC Press) p45

    [5]

    Hastings C J 1955 Approximations for Digital Computers (Princeton: Princeton University Press) p154

    [6]

    Wienke B R 1973 Nuclear Science and Engineering 52 247

    [7]

    Cooper G E 1974 J. Quant. Spectr. Rad. Transfer 14 887

    [8]

    Wienke B R 1975 J. Quant. Spectr. Rad. Transfer 15 151

    [9]

    Wienke B R, Lathrop B L 1984 J. Comp. Phys. 53 331

    [10]

    Brinkmann W 1984 J. Quant. Spectrosc. Radiat. Transfer 31 417

    [11]

    Wienke B R, Hendricks J S, Booth T E 1985 J. Quant. Spectr. Rad. Transfer 33 555

    [12]

    Wienke B R, Lathrop B L, Devaney J J 1986 Radiation Effects 94 303

    [13]

    Prasad M K, Kershaw D S, Beason J D 1986 Applied Physics Letters 48 1193

    [14]

    Kershaw D S 1987 J. Quant. Spectr. Rad. Transfer 38 347

    [15]

    Shestakov A I, Kershaw D S, Prasad M K 1988 J. Quant. Spectr. Rad. Transfer 40 577

    [16]

    Webster J B, Stephan B G, Bridgman C J 1973 Trans. Amer. Nucl. Soc. 17 574

    [17]

    Wienke B R, Lathrop B L, Devaney J J 1984 Nuclear Sci. Eng. 88 71

    [18]

    Booth T E, Hendricks J S 1985 Nuclear Sci. Eng. 90 248

    [19]

    Pomraning G C 1972 J. Quant. Spectr. Rad. Transfer 12 1047

    [20]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p185

    [21]

    Mohamed N M A 2014 Theory Probab. Appl. 58 698

    [22]

    Wienke B R 1975 Am. J. Phys. 43 317

  • [1]

    Yu M 1996 Selected Papers of Yu Min (Beijing: Institute of Applied Physics and Computational Mathematics) p102 (in Chinese)[于敏 1996 于敏论文集(北京: 北京应用物理与计算数学研究所) 第102页]

    [2]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p183

    [3]

    Evans R D 1955 The Atomic Nucleus (New York: McGraw-Hill Press) p677

    [4]

    Lux I, Koblinger L 1991 Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (Boston: CRC Press) p45

    [5]

    Hastings C J 1955 Approximations for Digital Computers (Princeton: Princeton University Press) p154

    [6]

    Wienke B R 1973 Nuclear Science and Engineering 52 247

    [7]

    Cooper G E 1974 J. Quant. Spectr. Rad. Transfer 14 887

    [8]

    Wienke B R 1975 J. Quant. Spectr. Rad. Transfer 15 151

    [9]

    Wienke B R, Lathrop B L 1984 J. Comp. Phys. 53 331

    [10]

    Brinkmann W 1984 J. Quant. Spectrosc. Radiat. Transfer 31 417

    [11]

    Wienke B R, Hendricks J S, Booth T E 1985 J. Quant. Spectr. Rad. Transfer 33 555

    [12]

    Wienke B R, Lathrop B L, Devaney J J 1986 Radiation Effects 94 303

    [13]

    Prasad M K, Kershaw D S, Beason J D 1986 Applied Physics Letters 48 1193

    [14]

    Kershaw D S 1987 J. Quant. Spectr. Rad. Transfer 38 347

    [15]

    Shestakov A I, Kershaw D S, Prasad M K 1988 J. Quant. Spectr. Rad. Transfer 40 577

    [16]

    Webster J B, Stephan B G, Bridgman C J 1973 Trans. Amer. Nucl. Soc. 17 574

    [17]

    Wienke B R, Lathrop B L, Devaney J J 1984 Nuclear Sci. Eng. 88 71

    [18]

    Booth T E, Hendricks J S 1985 Nuclear Sci. Eng. 90 248

    [19]

    Pomraning G C 1972 J. Quant. Spectr. Rad. Transfer 12 1047

    [20]

    Pomraning G C 1973 The Equations of Radiation Hydrodynamics (Oxford: Pergamon Press) p185

    [21]

    Mohamed N M A 2014 Theory Probab. Appl. 58 698

    [22]

    Wienke B R 1975 Am. J. Phys. 43 317

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1761
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-10
  • 修回日期:  2018-08-16
  • 刊出日期:  2018-11-05

光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法

  • 1. 北京应用物理与计算数学研究所, 北京 100094
  • 通信作者: 李树, li_shu@iapcm.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11775033,11775030)和中国工程物理研究院于敏基金(批准号:FZ025)资助的课题.

摘要: 高温全电离等离子体的辐射输运问题中,光子与电子的Compton散射与逆Compton散射是其中重要的特性,光子与相对论麦克斯韦电子散射的描述及截面的计算非常复杂且费时.本文提出了一种用于模拟计算光子与相对论麦克斯韦速度分布电子散射截面的蒙特卡罗计算方法.给出了各步骤的具体实现办法,推导了对应的计算公式,研究了相对论电子速率抽样方法,编写了光子与相对论电子散射的微观截面的蒙特卡罗计算程序.开展了高温全电离等离子体中,不同能量光子与不同温度电子散射的微观散射截面计算和分析.模拟计算结果显示,在电子温度低于25 keV情况下,本文方法与多重数值积分方法的计算结果非常接近;但随着电子温度继续升高,二者差异逐渐增大并较明显,经分析,可能是本文方法目前的电子速率抽样偏差所致,希望将来能够找到更好的相对论电子速率抽样方法以克服此缺陷.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回