搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切振动下湿颗粒的力学谱

唐瀚玉 王娜 吴学邦 刘长松

引用本文:
Citation:

剪切振动下湿颗粒的力学谱

唐瀚玉, 王娜, 吴学邦, 刘长松

Wet granular matter mechanical spectroscopy under low-frequency shear

Tang Han-Yu, Wang Na, Wu Xue-Bang, Liu Chang-Song
PDF
导出引用
  • 在恒温25 ℃剪切振动条件下,测量不同水分含量的NaCl湿颗粒体系的力学谱(能量耗散tan和剪切模量G).研究发现,随着剪切振幅增大,NaCl湿颗粒体系的剪切模量G和能量耗散tan都表现出类似于干颗粒体系的阻塞(Jamming)转变行为.随着体系中水含量的增大,湿颗粒体系的剪切模量G和能量耗散tan在质量分数约等于11%的临界水浓度下均出现一个峰值,且峰位与应变振幅无关,表明此时颗粒之间主要的作用力发生了变化.
    Dry granular materials consist of a collection of macroscopic discrete particles interacting solely via contact forces. By changing the external conditions, the granular packing displays rich phenomena ranging from fluid-like properties to jamming glassy behavior and to aging observed when these grains are trapped in a frozen state. Once the grains contact liquid, the force between the liquid and grains has an influence on the mechanical properties of the wet granular materials, and some mechanical behaviors are quite different from those of the dry granular materials. However, the underlying mechanism of the complex dynamics of granular assemblies is still not completely understood. In this paper, mechanical spectroscopy (the shear modular G and the related energy dissipation tan) of NaCl wet granular system is investigated with different liquid content (weight fraction) under the constant temperature 25℃ and air humidity by a modified low-frequency inverted torsion pendulum. The NaCl wet granular system also displays jamming behavior when subjected to an external vibration with increasing intensity, which is quiet similar to dry granular matter. With the increase of water content, all the spectra of tan and modular G show a peak at the water content about 11% (critical water content). At the same time, the applied shear force has little influence on the positions of these peaks. All of these behaviors illustrate that the main interaction forces among granular matters in the system are changed at the moment.
      通信作者: 刘长松, csliu@issp.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11374298,11174283)和中国科学院青年创新促进会(批准号:2015384)资助的课题.
      Corresponding author: Liu Chang-Song, csliu@issp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374298, 11174283) and Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2015384).
    [1]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese)[孙其诚, 王光谦 2008 物理学报 57 4667]

    [2]

    Tegzes P, Vicsek T, Schiffer P 2003 Phys. Rev. E 67 051303

    [3]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese)[高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 124501]

    [4]

    Chou S H, Liao C C, Hsiau S S 2010 Powder Technol. 201 266

    [5]

    Samadani A, Kudrolli A 2001 Phys. Rev. E 64 051301

    [6]

    Liao C C, Hsiau S S, Wen S F 2016 Adv. Powder Technol. 27 1265

    [7]

    Scheel M, Geromichalos D, Herminghaus S 2004 J. Phys. Condens. Mat. 16 S4213

    [8]

    Badetti M, Fall A, Chevoir F, Aimedieu P, Rodts S, Roux J N 2018 J. Rheol. arXiv:1802.09765

    [9]

    Bika D G, Gentzler M, Michaels J N 2001 Powder Technol. 117 98

    [10]

    Wang W J, Kong X Z, Zhu ZG 2007 Phys. Rev. E 75 041302

    [11]

    Wang W J, Zhu Z G 2008 EPL 82 24004

    [12]

    Chai L C, Wu X, Liu C S 2014 Soft Matter 10 6614

    [13]

    D'Anna G, Gremaud G 2001 Phys. Rev. E 64 011306

    [14]

    D'Anna G, Sellerio A L, Mari D, Gremaud G 2013 J.Stat. Mech. Theory E 5 P05009

    [15]

    D'Anna G 2000 Phys. Rev. E 62 982

    [16]

    Sellerio A L, Mari D, Gremaud G, D'Anna G 2011 Phys. Rev. E 83 021301

    [17]

    Wu X, Zhu Z 2009 J.Phys. Chem. B 113 11147

    [18]

    D'Anna G, Gremaud G 2001 EPL 54 599

    [19]

    D'Anna G, Gremaud G 2001 Phys. Rev. Lett. 87 254302

    [20]

    Mayor P, D'Anna G, Gremaud G 2004 Mat. Sci. Eng. A 370 307

    [21]

    Sellerio A L, Mari D, Gremaud G 2012 Solid State Phenomena 184 422

    [22]

    Xiong X M, Zhang J X 2010 Phys. Rev. E 81 042301

  • [1]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese)[孙其诚, 王光谦 2008 物理学报 57 4667]

    [2]

    Tegzes P, Vicsek T, Schiffer P 2003 Phys. Rev. E 67 051303

    [3]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese)[高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 124501]

    [4]

    Chou S H, Liao C C, Hsiau S S 2010 Powder Technol. 201 266

    [5]

    Samadani A, Kudrolli A 2001 Phys. Rev. E 64 051301

    [6]

    Liao C C, Hsiau S S, Wen S F 2016 Adv. Powder Technol. 27 1265

    [7]

    Scheel M, Geromichalos D, Herminghaus S 2004 J. Phys. Condens. Mat. 16 S4213

    [8]

    Badetti M, Fall A, Chevoir F, Aimedieu P, Rodts S, Roux J N 2018 J. Rheol. arXiv:1802.09765

    [9]

    Bika D G, Gentzler M, Michaels J N 2001 Powder Technol. 117 98

    [10]

    Wang W J, Kong X Z, Zhu ZG 2007 Phys. Rev. E 75 041302

    [11]

    Wang W J, Zhu Z G 2008 EPL 82 24004

    [12]

    Chai L C, Wu X, Liu C S 2014 Soft Matter 10 6614

    [13]

    D'Anna G, Gremaud G 2001 Phys. Rev. E 64 011306

    [14]

    D'Anna G, Sellerio A L, Mari D, Gremaud G 2013 J.Stat. Mech. Theory E 5 P05009

    [15]

    D'Anna G 2000 Phys. Rev. E 62 982

    [16]

    Sellerio A L, Mari D, Gremaud G, D'Anna G 2011 Phys. Rev. E 83 021301

    [17]

    Wu X, Zhu Z 2009 J.Phys. Chem. B 113 11147

    [18]

    D'Anna G, Gremaud G 2001 EPL 54 599

    [19]

    D'Anna G, Gremaud G 2001 Phys. Rev. Lett. 87 254302

    [20]

    Mayor P, D'Anna G, Gremaud G 2004 Mat. Sci. Eng. A 370 307

    [21]

    Sellerio A L, Mari D, Gremaud G 2012 Solid State Phenomena 184 422

    [22]

    Xiong X M, Zhang J X 2010 Phys. Rev. E 81 042301

  • [1] 秦威广, 王进, 纪文杰, 赵文景, 陈聪, 蓝鼎, 王育人. 液-液驱替动力学研究. 物理学报, 2022, 71(6): 064701. doi: 10.7498/aps.71.20211682
    [2] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散. 物理学报, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [3] 王蓬, 孔平, 李然, 华云松, 厚美瑛, 孙其诚. 准二维湿颗粒体系融化过程中的结构与缺陷. 物理学报, 2021, 70(11): 116401. doi: 10.7498/aps.70.20202037
    [4] 华昀峰, 章林溪. 自驱动颗粒体系中的熵力. 物理学报, 2017, 66(19): 190701. doi: 10.7498/aps.66.190701
    [5] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [6] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟. 物理学报, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [7] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [8] 韩红, 姜泽辉, 李翛然, 吕晶, 张睿, 任杰骥. 器壁滑动摩擦力对受振颗粒体系中冲击力倍周期分岔过程的影响. 物理学报, 2013, 62(11): 114501. doi: 10.7498/aps.62.114501
    [9] 冯旭, 张国华, 孙其诚. 颗粒尺寸分散度对颗粒体系力学和几何结构特性的影响. 物理学报, 2013, 62(18): 184501. doi: 10.7498/aps.62.184501
    [10] 周恒为, 刘君, 雷婷, 黄以能. 液态簧振动力学谱在蛋白质水凝胶脱水变性过程的应用研究. 物理学报, 2013, 62(7): 076203. doi: 10.7498/aps.62.076203
    [11] 张祺, 厚美瑛. 直剪颗粒体系的尺寸效应研究. 物理学报, 2012, 61(24): 244504. doi: 10.7498/aps.61.244504
    [12] 张祺, 李寅阊, 刘锐, 蒋亦民, 厚美瑛. 直剪颗粒体系声波探测. 物理学报, 2012, 61(23): 234501. doi: 10.7498/aps.61.234501
    [13] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析. 物理学报, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [14] 张兴刚, 胡林. 二维成分无序颗粒体系中法向力的分布. 物理学报, 2012, 61(10): 104501. doi: 10.7498/aps.61.104501
    [15] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究. 物理学报, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [16] 孙其诚, 金峰, 王光谦, 张国华. 二维颗粒体系单轴压缩形成的力链结构. 物理学报, 2010, 59(1): 30-37. doi: 10.7498/aps.59.30
    [17] 周恒为, 王丽娜, 郭秀珍, 吴娜娜, 张丽, 张晋鲁, 黄以能. 邻苯二甲酸二甲酯晶体中裂纹愈合效应的力学谱研究. 物理学报, 2010, 59(3): 2120-2125. doi: 10.7498/aps.59.2120
    [18] 张兴刚, 隆正文, 胡林. 颗粒体系中力分布的标量力网系综模型. 物理学报, 2009, 58(1): 90-96. doi: 10.7498/aps.58.90
    [19] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布. 物理学报, 2008, 57(8): 4667-4674. doi: 10.7498/aps.57.4667
    [20] 范 瑾, 李剑锋, 张红东, 杨玉良. 半刚性聚电解质链与带相反电荷颗粒复合体系的动力学模拟. 物理学报, 2007, 56(12): 7230-7235. doi: 10.7498/aps.56.7230
计量
  • 文章访问数:  4906
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-15
  • 修回日期:  2018-07-23
  • 刊出日期:  2019-10-20

/

返回文章
返回