搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光源尺寸和光谱带宽对波带板成像的影响

陆中伟 王晓方

引用本文:
Citation:

光源尺寸和光谱带宽对波带板成像的影响

陆中伟, 王晓方

Influence of source size and spectral bandwidth on the imaging of a zone plate

Lu Zhong-Wei, Wang Xiao-Fang
PDF
HTML
导出引用
  • X射线菲涅耳波带板成像能实现亚微米空间分辨能力, 有可能应用于激光等离子体或聚变靶的高分辨X射线成像诊断. 之前的数值模拟研究表明, 成像分辨能力受光源尺寸、入射光或成像光谱带宽的影响. 本文报道在632.8 nm为中心波长的可见光波段, 对波带板成像的数值模拟和原理性验证实验. 数值模拟表明: 随着扩展光源尺寸增加, 视场中央分辨能力基本不变, 而像对比度下降; 随着成像的光谱带宽的增加, 视场中央分辨能力与像对比度同时下降. 实验证实了数值模拟的结论, 且实验与数值模拟结果的定量比较也符合得较好.
    Direct X-ray imaging by a Fresnel zone plate (FZP) has achieved a spatial resolution of 10 nm on a synchrotron beamline. It may be used to obtain submicron-resolution X-ray images of laser-plasma sources or fusion targets. However, none of previous imaging experiments with laser-plasma kilo-elelctron-volt X-ray sources shows such a high resolution. In comparison with the FZP imaging on a synchrotron, we consider a case of imaging an extended object with a laser-plasma X-ray source that the illumination monochromaticity is lower and the field of view larger. Our simulations show that the spatial resolution is affected by both the object size and the spectral bandwidth of the source, which can explain the previous experiments. We conclude that by using a 100-zone FZP to image an object with up to 700 μm in size, a spatial resolution better than 1 μm can be realized by using X-rays of several kilo-electron volts and a spectral bandwidth just less than 3%. In this paper, we report a proof-of-principle study in simulation and experiment in an optical range centered at 632.8 nm. The simulation is performed with the same method as that previously used for X-ray imaging but with a 100-zone FZP working in the optical range. Simulations show that with the increase of the object size, the field-of-view contrast is degraded, but the spatial resolution is nearly unchanged. With the increase of the spectral bandwidth for the illumination, both the contrast and the resolution are degraded. In the experiments, different spectral bandwidths are realized by band-pass filters and different object sizes by an adjustable aperture. The experimental results are confirmed to be in agreement with the simulations. These results reveal that given a satisfied spectral bandwidth of laser-plasma X rays, the FZP imaging will be a promising approach to 1 μm or higher resolution X-ray imaging of a 1-mm-size object.
      通信作者: 王晓方, wang1@ustc.edu.cn
      Corresponding author: Wang Xiao-Fang, wang1@ustc.edu.cn
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Sute L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Fujioka S, Shiraga H, Nishikino M, Shigemori K, Sunahara A, Nakai M, Azechi H, Nishihara K, Yamanaka K 2003 Phys. Plasmas 10 4784Google Scholar

    [3]

    Xu P, Bai Y L, Liu B Y, Ouyang X, Wang B, Yang W Z, Gou Y S, Zhu B L, Qin J J 2012 Appl. Opt. 51 7820Google Scholar

    [4]

    侯立飞, 韦敏习, 袁永腾, 易涛, 詹夏宇, 易荣清, 杨国洪, 刘慎业, 江少恩 2013 强激光与粒子束 25 2313Google Scholar

    Hou L F, Wei M X, Yuan Y T, Yi T, Zhan X Y, Yi R Q, Yang G H, Liu S Y, Jiang S E 2013 High Power Laser Part. Beams 25 2313Google Scholar

    [5]

    Marshall F J, Bennett G R 1999 Rev. Sci. Instrum. 70 617Google Scholar

    [6]

    Aglitskiy Y, Lehecka T, Obenschain S, Bodner S, Pawley C, Gerber K, Sethian J, Brown C M, Seely J, Feldman U, Holland G 1998 Appl. Opt. 37 5253Google Scholar

    [7]

    Koch J A, Aglitskiy Y, Brown C, Cowan T, Freeman R, Hatchett S, Holland G, Key M, MacKinnon A, Seely J, Snavely R, Stephens R 2003 Rev. Sci. Instrum. 74 2130Google Scholar

    [8]

    伊圣振, 穆宝忠, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2012 强激光与粒子束 24 1076Google Scholar

    Yi S Z, Mu B Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2012 High Power Laser Part. Beams 24 1076Google Scholar

    [9]

    Chao W, Kim J, Rekawa S, Fischer P, Anderson E H 2009 Opt. Express 17 17669Google Scholar

    [10]

    Young M 1972 J. Opt. Soc. Am. 62 972Google Scholar

    [11]

    王晓方, 王晶宇 2011 物理学报 60 025212Google Scholar

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212Google Scholar

    [12]

    Cauchon G, P-Thomasset M, Sauneuf R, Dhez P, Idir M, Ollivier M, Troussel P, Boutin J Y, Le Breton J P 1998 Rev. Sci. Instrum. 69 3186Google Scholar

    [13]

    Azechi H, Tamari Y 2003 J. Plasma Fusion Res. 79 398Google Scholar

    [14]

    董建军, 曹磊峰, 陈铭, 谢常青, 杜华冰 2008 物理学报 57 3044Google Scholar

    Dong J J, Cao L F, Chen M, Xie C Q, Du H B 2008 Acta Phys. Sin. 57 3044Google Scholar

    [15]

    陈晓虎, 王晓方, 张巍巍, 汪文慧 2013 物理学报 62 015208Google Scholar

    Chen X H, Wang X F, Zhang W W, Wang W H 2013 Acta Phys. Sin. 62 015208Google Scholar

    [16]

    张巍巍, 王晓方 2014 强激光与粒子束 26 022003Google Scholar

    Zhang W W, Wang X F 2014 High Power Laser Part. Beams 26 022003Google Scholar

    [17]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004Google Scholar

    [18]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photon. 8 28Google Scholar

    [19]

    郁道银, 谈恒英 1999 工程光学 (北京: 机械工业出版社) 第249−250页

    Yu D Y, Tan H Y 1999 Engineering Optics (Beijing: China Machine Press) pp249−250 (in Chinese)

    [20]

    阿特伍德 D 著(张杰 译) 2003 软X射线与极紫外辐射的原理和应用 (北京: 科学出版社) 第354页

    Attwood D (translated by Zhang J) 2003 Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Beijing: Science Press) p354 (in Chinese)

  • 图 1  FZP成像示意图

    Fig. 1.  Schematic diagram for FZP’s imaging.

    图 2  不同光源尺寸下X射线FZP成像的分辨能力随入射光光谱带宽的变化

    Fig. 2.  Spatial resolution of X-ray imaging by FZP versus incident light spectral bandwidth under different source sizes.

    图 3  扩展光源模型及成像结果 (a) 扩展光源模型; (b) FZP对扩展光源成的像; (c) 图(b)中像沿虚线y2方向的强度分布; (d) 图(c)中y2 = 0附近的强度分布

    Fig. 3.  Extended source model and its imaging results: (a) Extended source model; (b) image of extended source by FZP; (c) intensity distribution along y2 axis in panel (b); (d) intensity distribution near y2 = 0 in panel (c).

    图 4  视场中央分辨能力与像对比度随扩展光源尺寸的变化

    Fig. 4.  Spatial resolution in the field-of-view center and image contrast versus the size of extended source.

    图 5  扩展光源在不同光谱带宽下的成像 (a) w = 0.5%; (b) w = 1.6%; (c) w = 8%; (d) w = 12%

    Fig. 5.  Images of an extended source with different spectral bandwidth: (a) w = 0.5%; (b) w = 1.6%; (c) w = 8%; (d) w = 12%.

    图 6  视场中央分辨能力与像对比度随光谱带宽的变化

    Fig. 6.  Spatial resolution in the field-of-view center and the image contrast versus spectral bandwidth.

    图 7  实验安排示意图

    Fig. 7.  Schematic diagram of experiment setup.

    图 8  扩展光源直径为3 mm时不同光谱带宽的成像结果及其沿x2轴方向强度分布 (a) w = 0.5%; (b) w = 1.5%; (c) w = 8%; (d) w = 12%

    Fig. 8.  Images of 3 mm-diameter source for different spectral bandwidth, and the corresponding intensity distribution along x2 axis: (a) w = 0.5%; (b) w = 1.5%; (c) w = 8%; (d) w = 12%.

    图 9  视场中央分辨能力与像对比度随光谱带宽变化的实验结果

    Fig. 9.  Experimental results for spatial resolution and image contrast in the field-of-view center versus spectral bandwidth.

    图 10  视场中央分辨能力与像对比度随扩展光源尺寸变化的实验结果

    Fig. 10.  Experimental results for spatial resolution and image contrast in the field-of-view center versus extended source size.

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Sute L J 2004 Phys. Plasmas 11 339Google Scholar

    [2]

    Fujioka S, Shiraga H, Nishikino M, Shigemori K, Sunahara A, Nakai M, Azechi H, Nishihara K, Yamanaka K 2003 Phys. Plasmas 10 4784Google Scholar

    [3]

    Xu P, Bai Y L, Liu B Y, Ouyang X, Wang B, Yang W Z, Gou Y S, Zhu B L, Qin J J 2012 Appl. Opt. 51 7820Google Scholar

    [4]

    侯立飞, 韦敏习, 袁永腾, 易涛, 詹夏宇, 易荣清, 杨国洪, 刘慎业, 江少恩 2013 强激光与粒子束 25 2313Google Scholar

    Hou L F, Wei M X, Yuan Y T, Yi T, Zhan X Y, Yi R Q, Yang G H, Liu S Y, Jiang S E 2013 High Power Laser Part. Beams 25 2313Google Scholar

    [5]

    Marshall F J, Bennett G R 1999 Rev. Sci. Instrum. 70 617Google Scholar

    [6]

    Aglitskiy Y, Lehecka T, Obenschain S, Bodner S, Pawley C, Gerber K, Sethian J, Brown C M, Seely J, Feldman U, Holland G 1998 Appl. Opt. 37 5253Google Scholar

    [7]

    Koch J A, Aglitskiy Y, Brown C, Cowan T, Freeman R, Hatchett S, Holland G, Key M, MacKinnon A, Seely J, Snavely R, Stephens R 2003 Rev. Sci. Instrum. 74 2130Google Scholar

    [8]

    伊圣振, 穆宝忠, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2012 强激光与粒子束 24 1076Google Scholar

    Yi S Z, Mu B Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2012 High Power Laser Part. Beams 24 1076Google Scholar

    [9]

    Chao W, Kim J, Rekawa S, Fischer P, Anderson E H 2009 Opt. Express 17 17669Google Scholar

    [10]

    Young M 1972 J. Opt. Soc. Am. 62 972Google Scholar

    [11]

    王晓方, 王晶宇 2011 物理学报 60 025212Google Scholar

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212Google Scholar

    [12]

    Cauchon G, P-Thomasset M, Sauneuf R, Dhez P, Idir M, Ollivier M, Troussel P, Boutin J Y, Le Breton J P 1998 Rev. Sci. Instrum. 69 3186Google Scholar

    [13]

    Azechi H, Tamari Y 2003 J. Plasma Fusion Res. 79 398Google Scholar

    [14]

    董建军, 曹磊峰, 陈铭, 谢常青, 杜华冰 2008 物理学报 57 3044Google Scholar

    Dong J J, Cao L F, Chen M, Xie C Q, Du H B 2008 Acta Phys. Sin. 57 3044Google Scholar

    [15]

    陈晓虎, 王晓方, 张巍巍, 汪文慧 2013 物理学报 62 015208Google Scholar

    Chen X H, Wang X F, Zhang W W, Wang W H 2013 Acta Phys. Sin. 62 015208Google Scholar

    [16]

    张巍巍, 王晓方 2014 强激光与粒子束 26 022003Google Scholar

    Zhang W W, Wang X F 2014 High Power Laser Part. Beams 26 022003Google Scholar

    [17]

    Chen L M, Liu F, Wang W M, Kando M, Mao J Y, Zhang L, Ma J L, Li Y T, Bulanov S V, Tajima T, Kato Y, Sheng Z M, Wei Z Y, Zhang J 2010 Phys. Rev. Lett. 104 215004Google Scholar

    [18]

    Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photon. 8 28Google Scholar

    [19]

    郁道银, 谈恒英 1999 工程光学 (北京: 机械工业出版社) 第249−250页

    Yu D Y, Tan H Y 1999 Engineering Optics (Beijing: China Machine Press) pp249−250 (in Chinese)

    [20]

    阿特伍德 D 著(张杰 译) 2003 软X射线与极紫外辐射的原理和应用 (北京: 科学出版社) 第354页

    Attwood D (translated by Zhang J) 2003 Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications (Beijing: Science Press) p354 (in Chinese)

  • [1] 张振驰, 唐桧波, 王金灿, 佀化冲, 王志, 蓝翔, 胡广月. 背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响. 物理学报, 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [2] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [3] 赵佳羿, 胡鹏, 王雨林, 王金灿, 唐桧波, 胡广月. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈. 物理学报, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [4] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验. 物理学报, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [5] 韩波, 梁雅琼. 质子成像法测量电容线圈靶磁场. 物理学报, 2020, 69(17): 175202. doi: 10.7498/aps.69.20200215
    [6] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [7] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, 2016, 65(23): 235201. doi: 10.7498/aps.65.235201
    [8] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究. 物理学报, 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [9] 陈晓虎, 王晓方, 张巍巍, 汪文慧. 相位型波带板应用于大尺度X射线源成像的分析与模拟. 物理学报, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [10] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [11] 纪运景, 卞保民, 童朝霞, 陆 建. 靶材偏置低电压对激光等离子体诱导靶上电势信号的影响. 物理学报, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [12] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [13] 张秋菊, 盛政明, 王兴海, 满宝元, 苍 宇, 张 杰. 相位反射产生的激光场空洞现象及其与激光等离子体参数相关性研究. 物理学报, 2006, 55(5): 2347-2351. doi: 10.7498/aps.55.2347
    [14] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [15] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究. 物理学报, 2005, 54(1): 192-196. doi: 10.7498/aps.54.192
    [16] 张秋菊, 盛政明, 苍 宇, 张 杰. 激光脉冲诱导的等离子体密度调制及其产生的相位反射. 物理学报, 2005, 54(9): 4217-4222. doi: 10.7498/aps.54.4217
    [17] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [18] 顾震宇, 季沛勇. 等离子体密度对多光子电离的影响. 物理学报, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [19] 王薇, 张杰, V.K.Senecha. 对激光等离子体中X射线的产生与辐射加热研究. 物理学报, 2002, 51(3): 590-595. doi: 10.7498/aps.51.590
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  5813
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-26
  • 修回日期:  2018-11-24
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回