搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性

祁祺 陈海峰 洪梓凡 刘英英 过立新 李立珺 陆芹 贾一凡

引用本文:
Citation:

无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性

祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡

Preparation and characteristics of ultra-wide Ga2O3 nanoribbons up to millimeter-long level without catalyst

Qi Qi, Chen Hai-Feng, Hong Zi-fan, Liu Ying-Ying, Guo Li-Xin, Li Li-Jun, Lu Qin, Jia Yi-Fan
PDF
HTML
导出引用
  • 氧化镓(Ga2O3)单晶纳米带由于具有独特的性质在电子器件中具有潜在的应用, 然而目前过小的接触面积使得基于这种纳米材料的器件制备变得非常复杂且充满挑战. 本文利用碳热还原法, 在无催化剂条件下使氧化镓粉末与碳纳米管在高温下反应, 生长出不同结构的氧化镓纳米材料, 发现了反应温度影响纳米结构的直径和比例的物理机制, 并制备出了长达毫米级的超宽β-Ga2O3单晶纳米带, 其横向尺寸可达44.3 μm. 利用透射电子显微镜(TEM)可以观察到纳米带呈单晶结构, 进一步拉曼散射光谱(Raman)表明这种方法生长的β-Ga2O3纳米带的应变较小, 缺陷密度较低, 且室温光致发光谱(PL)显示该氧化镓纳米带在激发波长295 nm下发出425 nm的稳定且高亮度的蓝光. 这种生长方法可为未来器件级氧化镓纳米带制备提供有益的参考.
    Gallium oxide (Ga2O3) single crystal nanoribbons have the potential applications in electronic devices due to their unique properties. However, the current small surface area makes the fabrication of device based on this nano-material very complex and challenging, and the introduction of catalyst also makes the growth process of Ga2O3 nanomaterial complicated and hard to control. Therefore, it is very important to study the growth method and physical mechanism of Ga2O3 nanoribbon with the larger surface area without catalyst. In this paper, the carbothermal reduction method is used to grow the Ga2O3 nanomaterial. In this paper, the gallium oxide powder mixes with the carbon nanotubes at a mass ratio of 1:1.5 without the catalyst, and then they are put into a high temperature diffusion furnace for the growth of Ga2O3 nanomaterials with different structures on silicon-based substrates by controlling the reaction temperature. In this paper, it is found that the reaction temperature directly affects the diameter and ratio of gallium oxide nanostructures. The reason is that the bonding energy of gallium oxide crystal is different in different crystal directions which leads to the different growth speed. The interface energy along the growth direction is the smallest and the growth speed is the fastest, while the growth speed along the vertical direction is slow. Finally, the crystal gradually grows into nanoriband, nanometer sheet and other structures. In addition, the ultra-wide β-Ga2O3 single crystal nanobelt up to the millimeter level was prepared in this paper. This nanobelt’s lateral dimension is observed to reach 44.3 μm under the scanning electron microscope (SEM), and the transmission electron microscope (TEM) is used to confirm that the nanoribbons have a single crystal structure. Further, Raman spectroscopy (Raman) shows that the β-Ga2O3 nanoribbons grown by this method have the smaller strain and the lower defect density. Additionally, the room temperature photoluminescence spectrum (PL) test shows that the gallium oxide nanoribbon emits a stable and high-brightness blue light at 425 nm at the excitation wavelength of 295 nm. This growth method can provide a useful way for the preparation of device-level gallium oxide nanoribbons in the future.
      通信作者: 陈海峰, chenhaifeng@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61306131)和陕西省自然科学基础研究计划(批准号: 2020JM-581)资助的课题
      Corresponding author: Chen Hai-Feng, chenhaifeng@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61306131) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2020JM-581)
    [1]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [2]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar

    [3]

    Wang H, Wang Y, Gong S Y, Zhou X Y, Yang Z X, Yang J, Han N, Chen Y F 2019 Cryst. 9 155Google Scholar

    [4]

    Ma J W, Fan H Q, Zheng X K, Wang H, Zhao N, Zhang M C, Yadav A K, Wang W J, Dong W Q, Wang S R 2020 J. Hazard. Mater. 387 122017Google Scholar

    [5]

    郑树文, 范广涵, 何苗, 赵灵智 2014 物理学报 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [6]

    He T, Zhang X D, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar

    [7]

    Wu Z Y, Jiang Z X, Song P Y, Tian P F, Hu L G, Liu R, Fang Z L, Kang J Y, Zhang T Y 2019 Small 15 1900580Google Scholar

    [8]

    Afzal A 2019 J. Materiomics 5 542Google Scholar

    [9]

    Gundiah G, Govindaraj A, Rao C 2002 Chem. Phys. Lett. 351 189Google Scholar

    [10]

    Cha S Y, Ahn B G, Ka ng, H C, Lee S Y, Noh D Y 2018 Ceram. Int. 44 16470Google Scholar

    [11]

    Tang C C, Fan S S, Chapelle M L, Li P 2001 Chem. Phys. Lett. 333 12Google Scholar

    [12]

    Feng Q Y, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C and Liang H 2016 J. Alloys Compd. 687 964Google Scholar

    [13]

    Alhalaili B, Bunk R, Vidu R, Islam M S 2019 Nanomaterials 9 1272Google Scholar

    [14]

    Fang J W, Fan H Q, Tian H L, Dong G Z 2015 Mater. Charact. 108 51Google Scholar

    [15]

    Kumar M, Kumar V, Singh R 2017 Scr. Mater. 138 75Google Scholar

    [16]

    Calestani D, Alabib A B, Coppede N, Villani M, Lazzarini L, Fabbri F, Salviati G, Zappettinia A 2017 J. Cryst. Growth 457 255Google Scholar

    [17]

    Feng Q J, Lia T T, Lia F, Lia Y Z, Shi B, Gao C, Wang D Y, Liang H W 2019 J. Cryst. Growth 509 91Google Scholar

    [18]

    Korbutowicz R, Stafiniak A, Serafinczuk J 2017 Mater. Sci-Poland 35 412Google Scholar

    [19]

    Wang S, Li Y W, Xiu X Q, Zhang L Y, Hua X M, Xie Z L, Tao T, Liu B, Chen P, Zhang R, Zheng Y D 2019 Chin. Phys. B 28 028104Google Scholar

    [20]

    Kumar M, Kumar V, Singh R 2017 Nano Res. Lett. 12 184Google Scholar

    [21]

    Li J, Fan H Q, Chen X P, Cao Z Y 2009 Colloid. Surf., A 349 202Google Scholar

    [22]

    Wang S L, Sun H L, Wang Z, Zeng X H, Ungar G, Guo D Y, Shen J Y, Li P G, Liu A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar

    [23]

    Gonzalo A, Nogales E, Lorenz K, Víllora E G, Shimamura K, Piqueras J, Méndez B 2017 J. Lumin. 191 56Google Scholar

    [24]

    Hu D Q, Zhuang S W, Dong X, Du G T, Zhang B L, Zhang Y T, Yin J Z 2018 Mater. Sci. Semicond. Process. 75 31Google Scholar

    [25]

    Dohy D, Lucazeau G 1982 J. Mol. Struct. 79 419Google Scholar

    [26]

    Alonso-Orts M, Sanchez A M, Lopez I, Nogales E, Piquerasa J, Mendeza B 2017 Cryst. Eng. Commun. 19 6217Google Scholar

    [27]

    Cheng J P, Zhang X B, Kong F Z, Ye Y, Tao X Y 2006 Rare Met. Mater. Eng. 35 1629Google Scholar

    [28]

    Binet L, Gourier D 1998 J. Phys. Chem. Solids 59 1241Google Scholar

    [29]

    Harwig T, Kellendonk F 1978 J. Solid State Chem. 24 255Google Scholar

    [30]

    Harwig T, Kellendonk F, Slappendel S 1978 J. Phys. Chem. Solids 39 675Google Scholar

    [31]

    Li J, Fan H Q, Jia X H, Chen J, Cao Z Y, Chen X P 2009 J. Alloys Compd. 481 735Google Scholar

  • 图 1  样品A—D在不同生长温度下的SEM图像 (a) 样品A (800 ℃); (b) 样品B (850 ℃); (c) 样品C (900 ℃); (d) 样品D (950 ℃)

    Fig. 1.  SEM images of samples a-d at different growth temperatures: (a) Sample A (800 ℃); (b) sample B (850 ℃); (c) sample C (900 ℃); (d) sample D (950 ℃).

    图 2  (a) 低倍镜下样品C超长的氧化镓纳米带; (b) 样品C高倍率下单个氧化镓纳米带; (c)互相缠绕弯曲的纳米带; (d) 高倍镜下样品D纳米带表面结块恶化

    Fig. 2.  (a) The ultra-long gallium oxide nanoribbons of sample C under low magnification; (b) single gallium oxide nanoribbon at high magnification of sample C; (c) intertwined curved nanoribbons; (d) under high power, the agglomeration of the surface of the sample D nanoribbons deteriorates.

    图 3  (a)样品C的X射线衍射图; (b)样品C的拉曼光谱

    Fig. 3.  (a) X-ray diffraction pattern of the sample C; (b) raman of the sample C.

    图 4  (a) 样品C的TEM图像, 插图显示了SAED模式; (b) 样品C的HR-TEM图像

    Fig. 4.  (a) TEM image of the sample C. Inset shows the SAED pattern; (b) HR-TEM image of the sample C.

    图 5  β-Ga2O3纳米带的室温PL光谱

    Fig. 5.  Room temperature PL spectra of β-Ga2O3 nanowires.

    表 1  样品A—D在不同温度下的生长参数

    Table 1.  The growth parameters of samples A–D at different temperature.

    SamplesGa2O3/gCNTs/gGrowth temperature/℃Times/minN2 carrier gas /sccm
    A 1 1.5 800 90 2
    B 1 1.5 850 90 2
    C 1 1.5 900 90 2
    D 1 1.5 950 90 2
    下载: 导出CSV
  • [1]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [2]

    Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157Google Scholar

    [3]

    Wang H, Wang Y, Gong S Y, Zhou X Y, Yang Z X, Yang J, Han N, Chen Y F 2019 Cryst. 9 155Google Scholar

    [4]

    Ma J W, Fan H Q, Zheng X K, Wang H, Zhao N, Zhang M C, Yadav A K, Wang W J, Dong W Q, Wang S R 2020 J. Hazard. Mater. 387 122017Google Scholar

    [5]

    郑树文, 范广涵, 何苗, 赵灵智 2014 物理学报 63 057102Google Scholar

    Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin. 63 057102Google Scholar

    [6]

    He T, Zhang X D, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar

    [7]

    Wu Z Y, Jiang Z X, Song P Y, Tian P F, Hu L G, Liu R, Fang Z L, Kang J Y, Zhang T Y 2019 Small 15 1900580Google Scholar

    [8]

    Afzal A 2019 J. Materiomics 5 542Google Scholar

    [9]

    Gundiah G, Govindaraj A, Rao C 2002 Chem. Phys. Lett. 351 189Google Scholar

    [10]

    Cha S Y, Ahn B G, Ka ng, H C, Lee S Y, Noh D Y 2018 Ceram. Int. 44 16470Google Scholar

    [11]

    Tang C C, Fan S S, Chapelle M L, Li P 2001 Chem. Phys. Lett. 333 12Google Scholar

    [12]

    Feng Q Y, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C and Liang H 2016 J. Alloys Compd. 687 964Google Scholar

    [13]

    Alhalaili B, Bunk R, Vidu R, Islam M S 2019 Nanomaterials 9 1272Google Scholar

    [14]

    Fang J W, Fan H Q, Tian H L, Dong G Z 2015 Mater. Charact. 108 51Google Scholar

    [15]

    Kumar M, Kumar V, Singh R 2017 Scr. Mater. 138 75Google Scholar

    [16]

    Calestani D, Alabib A B, Coppede N, Villani M, Lazzarini L, Fabbri F, Salviati G, Zappettinia A 2017 J. Cryst. Growth 457 255Google Scholar

    [17]

    Feng Q J, Lia T T, Lia F, Lia Y Z, Shi B, Gao C, Wang D Y, Liang H W 2019 J. Cryst. Growth 509 91Google Scholar

    [18]

    Korbutowicz R, Stafiniak A, Serafinczuk J 2017 Mater. Sci-Poland 35 412Google Scholar

    [19]

    Wang S, Li Y W, Xiu X Q, Zhang L Y, Hua X M, Xie Z L, Tao T, Liu B, Chen P, Zhang R, Zheng Y D 2019 Chin. Phys. B 28 028104Google Scholar

    [20]

    Kumar M, Kumar V, Singh R 2017 Nano Res. Lett. 12 184Google Scholar

    [21]

    Li J, Fan H Q, Chen X P, Cao Z Y 2009 Colloid. Surf., A 349 202Google Scholar

    [22]

    Wang S L, Sun H L, Wang Z, Zeng X H, Ungar G, Guo D Y, Shen J Y, Li P G, Liu A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar

    [23]

    Gonzalo A, Nogales E, Lorenz K, Víllora E G, Shimamura K, Piqueras J, Méndez B 2017 J. Lumin. 191 56Google Scholar

    [24]

    Hu D Q, Zhuang S W, Dong X, Du G T, Zhang B L, Zhang Y T, Yin J Z 2018 Mater. Sci. Semicond. Process. 75 31Google Scholar

    [25]

    Dohy D, Lucazeau G 1982 J. Mol. Struct. 79 419Google Scholar

    [26]

    Alonso-Orts M, Sanchez A M, Lopez I, Nogales E, Piquerasa J, Mendeza B 2017 Cryst. Eng. Commun. 19 6217Google Scholar

    [27]

    Cheng J P, Zhang X B, Kong F Z, Ye Y, Tao X Y 2006 Rare Met. Mater. Eng. 35 1629Google Scholar

    [28]

    Binet L, Gourier D 1998 J. Phys. Chem. Solids 59 1241Google Scholar

    [29]

    Harwig T, Kellendonk F 1978 J. Solid State Chem. 24 255Google Scholar

    [30]

    Harwig T, Kellendonk F, Slappendel S 1978 J. Phys. Chem. Solids 39 675Google Scholar

    [31]

    Li J, Fan H Q, Jia X H, Chen J, Cao Z Y, Chen X P 2009 J. Alloys Compd. 481 735Google Scholar

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究. 物理学报, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [3] 刘玮, 冯秋菊, 宜子琪, 俞琛, 王硕, 王彦明, 隋雪, 梁红伟. Cu掺杂β-Ga2O3薄膜的制备及紫外探测性能. 物理学报, 2023, 72(19): 198503. doi: 10.7498/aps.72.20230971
    [4] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [5] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [6] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学. 物理学报, 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] 李秀华, 张敏. 薄膜厚度对射频磁控溅射β-Ga2O3薄膜光电性能的影响*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211744
    [9] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [10] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [11] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [12] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展. 物理学报, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [13] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [14] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [15] 郑树文, 范广涵, 何苗, 赵灵智. W掺杂对β-Ga2O3导电性能影响的理论研究. 物理学报, 2014, 63(5): 057102. doi: 10.7498/aps.63.057102
    [16] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质. 物理学报, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [17] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [18] 林琼斐, 夏海平, 王金浩, 张约品, 张勤远. Ga2O3组分对Tm3+掺杂GeO2-Ga2O3-Li2O-BaO-La2O3玻璃的光谱性能影响. 物理学报, 2008, 57(4): 2554-2561. doi: 10.7498/aps.57.2554
    [19] 马海林, 苏 庆, 兰 伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响. 物理学报, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [20] 张纯祥, 林理彬, 梁宝鎏, 唐强, 李德卉, 罗达玲. α-Al2O3单晶的热释光和光释光特性. 物理学报, 2004, 53(1): 291-295. doi: 10.7498/aps.53.291
计量
  • 文章访问数:  8671
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-05-15
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-08-20

/

返回文章
返回