- 
				Defect control of semiconductors is critical to the photoelectric conversion efficiency of solar cells, because the defect and doping directly determine the carrier distribution, concentration, charge transfer and non-radiative recombination of photogenerated carriers. The defect types, structures and properties are complicated in the real semiconductors, which makes experimental characterization difficult, especially for the point defects. In this review, we firstly introduce the approaches of defect calculation based on the first-principles calculations, and take a series of typical solar cell materials for example, including CdTe, Cu(In/Ga)Se2, Cu2ZnSnS(Se)4 and CH3NH3PbI3. The elucidating of computations is also conducible to understanding and controlling the defect properties of solar cell materials in practical ways. The comparative study of these solar cell materials indicates that their efficiency bottlenecks are closely related to their defect properties. Unlike the traditional four-coordination semiconductor, the unique “defect tolerance” characteristic shown in the six-coordination perovskite materials enables the battery to have a high photoelectric conversion efficiency even when it is prepared not under harsh experimental conditions. Based on the first principles, the defect calculation plays an increasingly important role in understanding the material properties of solar cells and the bottleneck of device efficiency. At present, the calculation of defects based on the first principle mainly focuses on the formation energy and transition energy levels of defects. However, there is still a lack of researches on the dynamic behavior of carriers, especially on the non-radiative recombination of carriers, which directly affects the photoelectric conversion efficiency. Recently, with the improvement of computing power and the development of algorithms, it is possible to quantitatively calculate the electron-ion interaction, then quantitatively calculate the carriers captured by defect state. These methods have been used to study the defects of solar cells, especially perovskite solar cells. In this direction, how to combine these theoretical calculation results with experimental results to provide a more in-depth understanding of experimental results and further guide experiments in improving the efficiency of solar cells is worthy of further in-depth research.- 
													Keywords:
													
- solar cell materials /
- semiconductor /
- defect /
- first-principles calculation
 [1] Neumark G F 1997 Mater. Sci. Eng. 21 3 [2] Zhang S, Northrup J 1991 Phys. Rev. Lett. 67 2339  Google Scholar Google Scholar[3] Hine N D M, Frensch K, Foulkes W M C, Finnis M W 2009 Phys. Rev. B 79 024112  Google Scholar Google Scholar[4] Wei S H 2004 Comp. Mater. Sci. 30 337  Google Scholar Google Scholar[5] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 J. Appl. Phys. 57 9642 [6] Wei S H, Zunger A 1998 Appl. Phys. Lett. 72 2011  Google Scholar Google Scholar[7] Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y 2010 Phys. Rev. B 82 045106  Google Scholar Google Scholar[8] Nishijima K, Ohtani B, Yan X, Kamai T A, Chiyoya T, Tsubota T, Murakami N, Ohno T 2007 Chem. Phys. 339 64  Google Scholar Google Scholar[9] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 107 5483 [10] Yin W J, Ma J, Wei S H, Aljassim M M, Yan Y 2012 Phys. Rev. B 86 045211  Google Scholar Google Scholar[11] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903  Google Scholar Google Scholar[12] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653  Google Scholar Google Scholar[13] Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584  Google Scholar Google Scholar[14] Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349  Google Scholar Google Scholar[15] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Mater. Chem. C 117 13902 [16] Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215  Google Scholar Google Scholar[17] Lindstr M A, Mirbt S, Sanyal B, Klintenberg M 2016 J. Phys. D Appl. Phys. 49 035101  Google Scholar Google Scholar[18] Berding M A 1999 Phys. Rev. B 60 8943  Google Scholar Google Scholar[19] Wei S H, Zhang S B 2002 Phys. Rev. B 66 [20] Chang Y C, James R B, Davenport J W 2006 Phys. Rev. B 73 035211  Google Scholar Google Scholar[21] Du M H, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122  Google Scholar Google Scholar[22] Du M H, Takenaka H, Singh D J 2008 J. Appl. Phys. 104 093521  Google Scholar Google Scholar[23] Lordi V 2013 J. Cryst. Growth 379 84  Google Scholar Google Scholar[24] Biswas K, Du M H 2012 New J. Phys. 14 063020  Google Scholar Google Scholar[25] Shepidchenko A, Sanyal B, Klintenberg M, Mirbt S 2015 Sci. Rep. 5 14509  Google Scholar Google Scholar[26] Emanuelsson P, Omling P, Meyer B K, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578  Google Scholar Google Scholar[27] Castaldini A, Cavallini A, Fraboni B, Fernandez P, Piqueras J 1998 J. Appl. Phys. 83 2121  Google Scholar Google Scholar[28] Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945  Google Scholar Google Scholar[29] Reislöhner U 1998 J. Cryst. Growth 184 1160 [30] Kimel A V, Pavlov V V, Pisarev R V, Gridnev V N, Rasing T 2000 Phys. Rev. B 621 R10610 [31] Yang J H, Yin W J, Park J S, Ma J, Wei S H 2016 Semicond. Sci. Tech. 31 083002  Google Scholar Google Scholar[32] Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402  Google Scholar Google Scholar[33] Tsuchiya T 2013 Appl. Phys. Express 4 094104 [34] Reshchikov M A, Kvasov A A, Bishop M F, McMullen T, Usikov A, Soukhoveev V, Dmitriev V A 2011 Phys. Rev. B 84 075212  Google Scholar Google Scholar[35] Juršėnas S, Miasojedovas S, Kurilčik G, Žukauskas A, Hageman P R 2003 Appl. Phys. Lett. 83 66  Google Scholar Google Scholar[36] Kuciauskas D, Kanevce A, Dippo P, Seyedmohammadi S, Malik R 2015 IEEE J. Photovolt. 5 366  Google Scholar Google Scholar[37] Shi L, Wang L W 2012 Phys. Rev. Lett. 109 245501  Google Scholar Google Scholar[38] Park J H, Farrell S, Kodama R, Blissett C, Wang X, Colegrove E, Metzger W K, Gessert T A, Sivananthan S 2014 J. Electron. Mater. 43 2998  Google Scholar Google Scholar[39] Fahrenbruch A L 1987 Sol. Energy Mater. Sol. Cells 21 399 [40] Morehead F F, Mandel G 1964 IEEE T. Electron Dev. 5 53 [41] Heller, A 1977 J. Electrochem. Soc. 124 697  Google Scholar Google Scholar[42] Anthony T C, Fahrenbruch A L, Peters M G, Bube R H 1998 J. Appl. Phys. 57 400 [43] Zandian M, Chen A C, Edwall D D, Pasko J G, Arias J M 1997 Appl. Phys. Lett. 71 2815  Google Scholar Google Scholar[44] Hails J E, Irvine S J C, Cole-Hamilton D J, Giess J, Houlton M R, Graham A 2008 J. Electron. Mater. 37 1291  Google Scholar Google Scholar[45] Arias M J 1990 J. Vac. Sci. Technol. A 8 1025  Google Scholar Google Scholar[46] Yang J H, Shi L, Wang L W, Wei S H 2016 Sci. Rep. 6 21712  Google Scholar Google Scholar[47] Kraft C, Metzner H, Hädrich M, Reislöhner U, Schley P, Gobsch G, Goldhahn R 2010 Thin Solid Films 108 777 [48] Park C, Chadi D 1995 Phys. Rev. Lett. 75 1134  Google Scholar Google Scholar[49] Chadi D J 1999 Phys. Rev. B 59 15181  Google Scholar Google Scholar[50] Duenow J N, Burst J M, Albin D S, Kuciauskas D, Johnston S W, Reedy R C, Metzger W K 2014 Appl. Phys. Lett. 105 25 [51] Crowder B L, Hammer W N 1966 Phys. Rev. 150 541  Google Scholar Google Scholar[52] Altosaar M, Kukk P E, Mellikov E 2000 Thin Solid Films 361 443 [53] Mccandless B E, Moulton L V, Birkmire R W 1997 Prog. Photovolt: Res. Appl. 5 249  Google Scholar Google Scholar[54] Moutinho H R, Aljassim M M, Levi D H, Dippo P C, Kazmerski L L 1998 J. Vac. Sci. Technol. 16 1251  Google Scholar Google Scholar[55] Zhang L, Da-Silva J L F, Li J, Yan Y, Gessert T A, Wei S H 2008 Phys. Rev. Lett. 101 155501  Google Scholar Google Scholar[56] Komin V, Tetali B, Viswanathan V, Yu S, Ferekides C S 2003 Thin Solid Films 431 143 [57] Ringel S A, Smith A W, MacDougal M H, Rohatgi A 1991 Jpn. J. Appl. Phys. 70 881  Google Scholar Google Scholar[58] Visoly-Fisher I, Cohen S R, Ruzin A, Cahen D 2004 Adv. Mater. 16 879  Google Scholar Google Scholar[59] Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M 2014 Phys. Rev. Lett. 112 156103  Google Scholar Google Scholar[60] Hofmann D M, Omling P, Grimmeiss H G, Meyer B K, Sinerius D 1992 Phys. Rev. B 45 6247  Google Scholar Google Scholar[61] Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, Mattina F L, Blosch P, Cheah E, Chirila A, Fella C M 2013 Nat. Commun. 4 2306  Google Scholar Google Scholar[62] Perrenoud J, Kranz L, Gretener C, Pianezzi F, Nishiwaki S, Buecheler S, Tiwari A N 2013 J. Appl. Phys. 114 174505  Google Scholar Google Scholar[63] Yan Y, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912  Google Scholar Google Scholar[64] Park J S, Kang J, Yang J H, Metzger W, Wei S H 2015 New J. Phys. 17 013027  Google Scholar Google Scholar[65] Yan Y, Al-Jassim M M, Jones K M, Wei S H, Zhang S B 2000 Appl. Phys. Lett. 77 1461  Google Scholar Google Scholar[66] Yan Y, Al-Jassim M M, Jones K M 2003 J. Appl. Phys. 94 2976  Google Scholar Google Scholar[67] Sun C, Ning L, Wang J, Lee J, Kim M J 2013 Appl. Phys. Lett. 103 252104  Google Scholar Google Scholar[68] Ma J, Yang J, Wei S H, Da-Silva J L F 2014 Phys. Rev. B 90 155208  Google Scholar Google Scholar[69] Wei S H 2013 Phys. Rev. Lett. 110 235901  Google Scholar Google Scholar[70] Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822  Google Scholar Google Scholar[71] Jaffe J E, Zunger A 1984 Phys. Rev. B 30 741  Google Scholar Google Scholar[72] Martins J L, Zunger A 2004 Phys. Rev. Lett. 56 1400 [73] Zunger A 1987 Appl. Phys. Lett. 50 164  Google Scholar Google Scholar[74] Wei S H, Ferreira L G, Zunger A 1992 Phys. Rev. B 45 2533  Google Scholar Google Scholar[75] Osório R, Froyen S, Zunger A 1991 Phys. Rev. B 43 14055  Google Scholar Google Scholar[76] Parkes J, Tomlinson R D, Hampshire M J 1973 Solid State Electron 16 773  Google Scholar Google Scholar[77] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642  Google Scholar Google Scholar[78] Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus K O, Schock H W 1993 Appl. Phys. Lett. 62 597  Google Scholar Google Scholar[79] Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, Hermann A M 1998 Appl. Phys. Lett. 65 198 [80] Contreras M A, Mansfield L M, Egaas B, Li J, Romero M, Noufi R, Rudigervoigt E, Mannstadt W 2012 37th IEEE Photovoltaic Specialists Conference, Seattle, June 19–24, 2011 p843 [81] Se to, John Y W 1975 J. Appl. Phys. 46 5247  Google Scholar Google Scholar[82] Gloeckler M, Sites J R, Metzger W K 2005 J. Appl. Phys. 9 8 [83] Metzger W K, Gloeckler M 2005 J. Appl. Phys. 98 063701  Google Scholar Google Scholar[84] Taretto K, Rau U 2008 J. Appl. Phys. 103 225 [85] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894  Google Scholar Google Scholar[86] Sadewasser S, Abou-Ras D, Azulay D, Baier R, Balberg I, Cahen D, Cohen S, Gartsman K, Ganesan K, Kavalakkatt J 2011 Thin Solid Films 519 7341  Google Scholar Google Scholar[87] Schuler S, Nishiwaki S, Beckmann J, Rega N, Lux-Steiner M C 2003 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 p504 [88] Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Brillson L J 2005 Appl. Phys. Lett. 86 162105  Google Scholar Google Scholar[89] Lei C, Li C M, Rockett A, Robertson I M 2007 J. Appl. Phys. 101 499 [90] Abou-Ras D, Schaffer B, Schaffer M, Schmidt S S, Unold T 2012 Phys. Rev. Lett. 108 075502  Google Scholar Google Scholar[91] Yin W J, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013 Appl. Phys. Lett. 102 193905  Google Scholar Google Scholar[92] Kaufmann C A, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock H W 2009 Sol. Energy Mater. Sol. Cells 93 859  Google Scholar Google Scholar[93] Grimmer H, Bollmann W, Warrington D H 1974 Acta Crystallogr. 30 197  Google Scholar Google Scholar[94] Abou-Ras D, Schmidt S S, Caballero R, Unold T, Schock H W, Koch C T, Schaffer B, Schaffer M, Choi P P, Cojocaru-Mirédin O 2012 Adv. Energy Mater. 2 992  Google Scholar Google Scholar[95] Ahn S J, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun J H 2010 Appl. Phys. Lett. 97 021905  Google Scholar Google Scholar[96] Grossberg M, Krustok J, Timmo K, Altosaar M 2009 Thin Solid Films 517 2489  Google Scholar Google Scholar[97] Choi S G, Zhao H Y, Persson C, Perkins C L, Donohue A L, To B, Norman A G, Li J, Repins I L 2012 J. Appl. Phys 111 033506  Google Scholar Google Scholar[98] Katagiri H, Jimbo K, Maw W S, Oishi K, Takeuchi A 2009 Thin Solid Films 517 2455  Google Scholar Google Scholar[99] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 phys. stat. sol. 245 1772  Google Scholar Google Scholar[100] Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481  Google Scholar Google Scholar[101] Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994  Google Scholar Google Scholar[102] Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 1  Google Scholar Google Scholar[103] Kumar Y B K, Bhaskar P U, Babu G S, Raja V S 2009 Phys. Stat. Sol. 207 149 [104] Wibowo R A, Kim W S, Lee E S, Munir B, Kim K H 2007 J. Phys. Chem. Solids 68 1908  Google Scholar Google Scholar[105] Miyamoto Y, Tanaka K, Oonuki M, Moritake N, Uchiki H 2008 Sol. Energy Mater. Sol. Cells 47 596 [106] Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E 2008 Phys. Stat. Sol. 205 167  Google Scholar Google Scholar[107] Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A 2008 Thin Solid Films 517 1449  Google Scholar Google Scholar[108] Zhang X, Shi X, Ye W, Ma C, Wang C 2009 Appl. Phys. A-Mater. Sci. 94 381  Google Scholar Google Scholar[109] Hones K, Zscherpel E, Scragg J, Siebentritt S 2009 Phys. Rev. B 404 4949 [110] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522  Google Scholar Google Scholar[111] Chen S, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204  Google Scholar Google Scholar[112] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902  Google Scholar Google Scholar[113] Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202  Google Scholar Google Scholar[114] Persson C, Zhao Y J, Lany S, Zunger A 2005 Phys. Rev. B 72 035211  Google Scholar Google Scholar[115] Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141  Google Scholar Google Scholar[116] Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978  Google Scholar Google Scholar[117] Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230  Google Scholar Google Scholar[118] Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater. Res. Bull. 47 302  Google Scholar Google Scholar[119] Tanaka K, Moritake N, Oonuki M, Uchiki H 2008 Jpn. J. Appl. Phys. 47 598  Google Scholar Google Scholar[120] Prabhakar T, Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001  Google Scholar Google Scholar[121] Schmidt S S, Abouras D, Sadewasser S, Yin W, Feng C, Yan Y 2012 Phys. Rev. Lett. 109 6709 [122] Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603  Google Scholar Google Scholar[123] Schmid D, Ruckh M, Schock H W 1996 Appl. Surf. Sci. 103 409  Google Scholar Google Scholar[124] Yan Y, Jones K M, Abushama J, Young M, Asher S, Al-Jassim M M, Noufi R 2002 Appl. Phys. Lett. 81 1008  Google Scholar Google Scholar[125] Yan Y, Noufi R, Al-Jassim M M 2006 Phys. Rev. Lett. 96 205501  Google Scholar Google Scholar[126] Yin W J, Wu Y, Wei S H, Noufi R, Yan Y 2014 Adv. Energy Mater. 4 1 [127] Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926  Google Scholar Google Scholar[128] Best Research-Cell Efficiency Chart, Korea Research Institute of Chemical Technology and MIT https://www. nrel.gov/pv/cell-efficiency.html/[2019-11-20] [129] Walsh A, Watson G W 2005 J. Solid State Chem. 178 1422  Google Scholar Google Scholar[130] Walsh A, Payne D J, Egdell R G, Watson G W 2011 Chemi. Soc. Rev. 40 4455  Google Scholar Google Scholar[131] Wei S H, Zunger A 1997 Phys. Rev. B 55 16 [132] Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701  Google Scholar Google Scholar[133] Yu L, Kokenyesi R S, Keszler D A, Zunger A 2013 Adv. Energy Mater. 3 43  Google Scholar Google Scholar[134] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395  Google Scholar Google Scholar[135] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508  Google Scholar Google Scholar[136] Yin W J, Wei S H, Al-Jassim M M, Yan Y 2011 Appl. Phys. Lett. 99 142109  Google Scholar Google Scholar[137] Brandt R E, Stevanovic V, Ginley D S, Buonassisi T 2015 Mrs Commun. 5 265  Google Scholar Google Scholar[138] Walsh A, Zunger A 2017 Nat. Mater. 16 964  Google Scholar Google Scholar[139] Seok S I, Gratzel M, Park N G 2018 Small 14 1704177  Google Scholar Google Scholar[140] Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509  Google Scholar Google Scholar[141] Gao F, Zhao Y, Zhang X W, You J B 2019 Adv. Energy Mater. 1902650 [142] Ni Z Y, Bao C X, Y. L, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352  Google Scholar Google Scholar[143] Li J L, Yang J, Wu T, Wei S H 2019 J. Mater. Chem. C 7 4230 [144] Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570  Google Scholar Google Scholar[145] Li W, SunY Y, Li I Q, Zhou Z H, Tang J F, Prezhdo O V 2018 J. Am. Chem. Soc. 140 15753  Google Scholar Google Scholar[146] Wang J, Li W, Yin W J 2020 Adv. Mater. 32 1906115  Google Scholar Google Scholar
- 
				
    
    
图 11 CuIn1–xGaxSe2的光电转换效率和开路电压随带隙值变化趋势 Fig. 11. The photoelectric conversion efficiency and open circuit voltage of CuIn1–xGaxSe2 vs. the bandgap value[80]. 图 12 CuInSe2的 $ \sum 3\left(114\right) $ 晶界 (a)超胞结构; (b)晶界处的局域原子结构; (c)晶界处的态密度、能带结构和差分电荷密度; (d)晶界处错键形成缺陷带的过程[91]Fig. 12. $ \sum 3\left(114\right) $ of CuInSe2 grain boundary: (a) Supercell structure; (b) local atomic structures at grain boundaries; (c) state density, energy band structure and differential charge density at the grain boundary; (d) the process of forming a defect band by a wrong bond at the grain boundary[91].
- 
				
[1] Neumark G F 1997 Mater. Sci. Eng. 21 3 [2] Zhang S, Northrup J 1991 Phys. Rev. Lett. 67 2339  Google Scholar Google Scholar[3] Hine N D M, Frensch K, Foulkes W M C, Finnis M W 2009 Phys. Rev. B 79 024112  Google Scholar Google Scholar[4] Wei S H 2004 Comp. Mater. Sci. 30 337  Google Scholar Google Scholar[5] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 J. Appl. Phys. 57 9642 [6] Wei S H, Zunger A 1998 Appl. Phys. Lett. 72 2011  Google Scholar Google Scholar[7] Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y 2010 Phys. Rev. B 82 045106  Google Scholar Google Scholar[8] Nishijima K, Ohtani B, Yan X, Kamai T A, Chiyoya T, Tsubota T, Murakami N, Ohno T 2007 Chem. Phys. 339 64  Google Scholar Google Scholar[9] Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 107 5483 [10] Yin W J, Ma J, Wei S H, Aljassim M M, Yan Y 2012 Phys. Rev. B 86 045211  Google Scholar Google Scholar[11] Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903  Google Scholar Google Scholar[12] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653  Google Scholar Google Scholar[13] Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584  Google Scholar Google Scholar[14] Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349  Google Scholar Google Scholar[15] Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Mater. Chem. C 117 13902 [16] Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215  Google Scholar Google Scholar[17] Lindstr M A, Mirbt S, Sanyal B, Klintenberg M 2016 J. Phys. D Appl. Phys. 49 035101  Google Scholar Google Scholar[18] Berding M A 1999 Phys. Rev. B 60 8943  Google Scholar Google Scholar[19] Wei S H, Zhang S B 2002 Phys. Rev. B 66 [20] Chang Y C, James R B, Davenport J W 2006 Phys. Rev. B 73 035211  Google Scholar Google Scholar[21] Du M H, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122  Google Scholar Google Scholar[22] Du M H, Takenaka H, Singh D J 2008 J. Appl. Phys. 104 093521  Google Scholar Google Scholar[23] Lordi V 2013 J. Cryst. Growth 379 84  Google Scholar Google Scholar[24] Biswas K, Du M H 2012 New J. Phys. 14 063020  Google Scholar Google Scholar[25] Shepidchenko A, Sanyal B, Klintenberg M, Mirbt S 2015 Sci. Rep. 5 14509  Google Scholar Google Scholar[26] Emanuelsson P, Omling P, Meyer B K, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578  Google Scholar Google Scholar[27] Castaldini A, Cavallini A, Fraboni B, Fernandez P, Piqueras J 1998 J. Appl. Phys. 83 2121  Google Scholar Google Scholar[28] Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945  Google Scholar Google Scholar[29] Reislöhner U 1998 J. Cryst. Growth 184 1160 [30] Kimel A V, Pavlov V V, Pisarev R V, Gridnev V N, Rasing T 2000 Phys. Rev. B 621 R10610 [31] Yang J H, Yin W J, Park J S, Ma J, Wei S H 2016 Semicond. Sci. Tech. 31 083002  Google Scholar Google Scholar[32] Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402  Google Scholar Google Scholar[33] Tsuchiya T 2013 Appl. Phys. Express 4 094104 [34] Reshchikov M A, Kvasov A A, Bishop M F, McMullen T, Usikov A, Soukhoveev V, Dmitriev V A 2011 Phys. Rev. B 84 075212  Google Scholar Google Scholar[35] Juršėnas S, Miasojedovas S, Kurilčik G, Žukauskas A, Hageman P R 2003 Appl. Phys. Lett. 83 66  Google Scholar Google Scholar[36] Kuciauskas D, Kanevce A, Dippo P, Seyedmohammadi S, Malik R 2015 IEEE J. Photovolt. 5 366  Google Scholar Google Scholar[37] Shi L, Wang L W 2012 Phys. Rev. Lett. 109 245501  Google Scholar Google Scholar[38] Park J H, Farrell S, Kodama R, Blissett C, Wang X, Colegrove E, Metzger W K, Gessert T A, Sivananthan S 2014 J. Electron. Mater. 43 2998  Google Scholar Google Scholar[39] Fahrenbruch A L 1987 Sol. Energy Mater. Sol. Cells 21 399 [40] Morehead F F, Mandel G 1964 IEEE T. Electron Dev. 5 53 [41] Heller, A 1977 J. Electrochem. Soc. 124 697  Google Scholar Google Scholar[42] Anthony T C, Fahrenbruch A L, Peters M G, Bube R H 1998 J. Appl. Phys. 57 400 [43] Zandian M, Chen A C, Edwall D D, Pasko J G, Arias J M 1997 Appl. Phys. Lett. 71 2815  Google Scholar Google Scholar[44] Hails J E, Irvine S J C, Cole-Hamilton D J, Giess J, Houlton M R, Graham A 2008 J. Electron. Mater. 37 1291  Google Scholar Google Scholar[45] Arias M J 1990 J. Vac. Sci. Technol. A 8 1025  Google Scholar Google Scholar[46] Yang J H, Shi L, Wang L W, Wei S H 2016 Sci. Rep. 6 21712  Google Scholar Google Scholar[47] Kraft C, Metzner H, Hädrich M, Reislöhner U, Schley P, Gobsch G, Goldhahn R 2010 Thin Solid Films 108 777 [48] Park C, Chadi D 1995 Phys. Rev. Lett. 75 1134  Google Scholar Google Scholar[49] Chadi D J 1999 Phys. Rev. B 59 15181  Google Scholar Google Scholar[50] Duenow J N, Burst J M, Albin D S, Kuciauskas D, Johnston S W, Reedy R C, Metzger W K 2014 Appl. Phys. Lett. 105 25 [51] Crowder B L, Hammer W N 1966 Phys. Rev. 150 541  Google Scholar Google Scholar[52] Altosaar M, Kukk P E, Mellikov E 2000 Thin Solid Films 361 443 [53] Mccandless B E, Moulton L V, Birkmire R W 1997 Prog. Photovolt: Res. Appl. 5 249  Google Scholar Google Scholar[54] Moutinho H R, Aljassim M M, Levi D H, Dippo P C, Kazmerski L L 1998 J. Vac. Sci. Technol. 16 1251  Google Scholar Google Scholar[55] Zhang L, Da-Silva J L F, Li J, Yan Y, Gessert T A, Wei S H 2008 Phys. Rev. Lett. 101 155501  Google Scholar Google Scholar[56] Komin V, Tetali B, Viswanathan V, Yu S, Ferekides C S 2003 Thin Solid Films 431 143 [57] Ringel S A, Smith A W, MacDougal M H, Rohatgi A 1991 Jpn. J. Appl. Phys. 70 881  Google Scholar Google Scholar[58] Visoly-Fisher I, Cohen S R, Ruzin A, Cahen D 2004 Adv. Mater. 16 879  Google Scholar Google Scholar[59] Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M 2014 Phys. Rev. Lett. 112 156103  Google Scholar Google Scholar[60] Hofmann D M, Omling P, Grimmeiss H G, Meyer B K, Sinerius D 1992 Phys. Rev. B 45 6247  Google Scholar Google Scholar[61] Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, Mattina F L, Blosch P, Cheah E, Chirila A, Fella C M 2013 Nat. Commun. 4 2306  Google Scholar Google Scholar[62] Perrenoud J, Kranz L, Gretener C, Pianezzi F, Nishiwaki S, Buecheler S, Tiwari A N 2013 J. Appl. Phys. 114 174505  Google Scholar Google Scholar[63] Yan Y, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912  Google Scholar Google Scholar[64] Park J S, Kang J, Yang J H, Metzger W, Wei S H 2015 New J. Phys. 17 013027  Google Scholar Google Scholar[65] Yan Y, Al-Jassim M M, Jones K M, Wei S H, Zhang S B 2000 Appl. Phys. Lett. 77 1461  Google Scholar Google Scholar[66] Yan Y, Al-Jassim M M, Jones K M 2003 J. Appl. Phys. 94 2976  Google Scholar Google Scholar[67] Sun C, Ning L, Wang J, Lee J, Kim M J 2013 Appl. Phys. Lett. 103 252104  Google Scholar Google Scholar[68] Ma J, Yang J, Wei S H, Da-Silva J L F 2014 Phys. Rev. B 90 155208  Google Scholar Google Scholar[69] Wei S H 2013 Phys. Rev. Lett. 110 235901  Google Scholar Google Scholar[70] Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822  Google Scholar Google Scholar[71] Jaffe J E, Zunger A 1984 Phys. Rev. B 30 741  Google Scholar Google Scholar[72] Martins J L, Zunger A 2004 Phys. Rev. Lett. 56 1400 [73] Zunger A 1987 Appl. Phys. Lett. 50 164  Google Scholar Google Scholar[74] Wei S H, Ferreira L G, Zunger A 1992 Phys. Rev. B 45 2533  Google Scholar Google Scholar[75] Osório R, Froyen S, Zunger A 1991 Phys. Rev. B 43 14055  Google Scholar Google Scholar[76] Parkes J, Tomlinson R D, Hampshire M J 1973 Solid State Electron 16 773  Google Scholar Google Scholar[77] Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642  Google Scholar Google Scholar[78] Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus K O, Schock H W 1993 Appl. Phys. Lett. 62 597  Google Scholar Google Scholar[79] Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, Hermann A M 1998 Appl. Phys. Lett. 65 198 [80] Contreras M A, Mansfield L M, Egaas B, Li J, Romero M, Noufi R, Rudigervoigt E, Mannstadt W 2012 37th IEEE Photovoltaic Specialists Conference, Seattle, June 19–24, 2011 p843 [81] Se to, John Y W 1975 J. Appl. Phys. 46 5247  Google Scholar Google Scholar[82] Gloeckler M, Sites J R, Metzger W K 2005 J. Appl. Phys. 9 8 [83] Metzger W K, Gloeckler M 2005 J. Appl. Phys. 98 063701  Google Scholar Google Scholar[84] Taretto K, Rau U 2008 J. Appl. Phys. 103 225 [85] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894  Google Scholar Google Scholar[86] Sadewasser S, Abou-Ras D, Azulay D, Baier R, Balberg I, Cahen D, Cohen S, Gartsman K, Ganesan K, Kavalakkatt J 2011 Thin Solid Films 519 7341  Google Scholar Google Scholar[87] Schuler S, Nishiwaki S, Beckmann J, Rega N, Lux-Steiner M C 2003 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 p504 [88] Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Brillson L J 2005 Appl. Phys. Lett. 86 162105  Google Scholar Google Scholar[89] Lei C, Li C M, Rockett A, Robertson I M 2007 J. Appl. Phys. 101 499 [90] Abou-Ras D, Schaffer B, Schaffer M, Schmidt S S, Unold T 2012 Phys. Rev. Lett. 108 075502  Google Scholar Google Scholar[91] Yin W J, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013 Appl. Phys. Lett. 102 193905  Google Scholar Google Scholar[92] Kaufmann C A, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock H W 2009 Sol. Energy Mater. Sol. Cells 93 859  Google Scholar Google Scholar[93] Grimmer H, Bollmann W, Warrington D H 1974 Acta Crystallogr. 30 197  Google Scholar Google Scholar[94] Abou-Ras D, Schmidt S S, Caballero R, Unold T, Schock H W, Koch C T, Schaffer B, Schaffer M, Choi P P, Cojocaru-Mirédin O 2012 Adv. Energy Mater. 2 992  Google Scholar Google Scholar[95] Ahn S J, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun J H 2010 Appl. Phys. Lett. 97 021905  Google Scholar Google Scholar[96] Grossberg M, Krustok J, Timmo K, Altosaar M 2009 Thin Solid Films 517 2489  Google Scholar Google Scholar[97] Choi S G, Zhao H Y, Persson C, Perkins C L, Donohue A L, To B, Norman A G, Li J, Repins I L 2012 J. Appl. Phys 111 033506  Google Scholar Google Scholar[98] Katagiri H, Jimbo K, Maw W S, Oishi K, Takeuchi A 2009 Thin Solid Films 517 2455  Google Scholar Google Scholar[99] Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 phys. stat. sol. 245 1772  Google Scholar Google Scholar[100] Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481  Google Scholar Google Scholar[101] Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994  Google Scholar Google Scholar[102] Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 1  Google Scholar Google Scholar[103] Kumar Y B K, Bhaskar P U, Babu G S, Raja V S 2009 Phys. Stat. Sol. 207 149 [104] Wibowo R A, Kim W S, Lee E S, Munir B, Kim K H 2007 J. Phys. Chem. Solids 68 1908  Google Scholar Google Scholar[105] Miyamoto Y, Tanaka K, Oonuki M, Moritake N, Uchiki H 2008 Sol. Energy Mater. Sol. Cells 47 596 [106] Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E 2008 Phys. Stat. Sol. 205 167  Google Scholar Google Scholar[107] Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A 2008 Thin Solid Films 517 1449  Google Scholar Google Scholar[108] Zhang X, Shi X, Ye W, Ma C, Wang C 2009 Appl. Phys. A-Mater. Sci. 94 381  Google Scholar Google Scholar[109] Hones K, Zscherpel E, Scragg J, Siebentritt S 2009 Phys. Rev. B 404 4949 [110] Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522  Google Scholar Google Scholar[111] Chen S, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204  Google Scholar Google Scholar[112] Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902  Google Scholar Google Scholar[113] Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202  Google Scholar Google Scholar[114] Persson C, Zhao Y J, Lany S, Zunger A 2005 Phys. Rev. B 72 035211  Google Scholar Google Scholar[115] Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141  Google Scholar Google Scholar[116] Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978  Google Scholar Google Scholar[117] Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230  Google Scholar Google Scholar[118] Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater. Res. Bull. 47 302  Google Scholar Google Scholar[119] Tanaka K, Moritake N, Oonuki M, Uchiki H 2008 Jpn. J. Appl. Phys. 47 598  Google Scholar Google Scholar[120] Prabhakar T, Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001  Google Scholar Google Scholar[121] Schmidt S S, Abouras D, Sadewasser S, Yin W, Feng C, Yan Y 2012 Phys. Rev. Lett. 109 6709 [122] Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603  Google Scholar Google Scholar[123] Schmid D, Ruckh M, Schock H W 1996 Appl. Surf. Sci. 103 409  Google Scholar Google Scholar[124] Yan Y, Jones K M, Abushama J, Young M, Asher S, Al-Jassim M M, Noufi R 2002 Appl. Phys. Lett. 81 1008  Google Scholar Google Scholar[125] Yan Y, Noufi R, Al-Jassim M M 2006 Phys. Rev. Lett. 96 205501  Google Scholar Google Scholar[126] Yin W J, Wu Y, Wei S H, Noufi R, Yan Y 2014 Adv. Energy Mater. 4 1 [127] Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926  Google Scholar Google Scholar[128] Best Research-Cell Efficiency Chart, Korea Research Institute of Chemical Technology and MIT https://www. nrel.gov/pv/cell-efficiency.html/[2019-11-20] [129] Walsh A, Watson G W 2005 J. Solid State Chem. 178 1422  Google Scholar Google Scholar[130] Walsh A, Payne D J, Egdell R G, Watson G W 2011 Chemi. Soc. Rev. 40 4455  Google Scholar Google Scholar[131] Wei S H, Zunger A 1997 Phys. Rev. B 55 16 [132] Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701  Google Scholar Google Scholar[133] Yu L, Kokenyesi R S, Keszler D A, Zunger A 2013 Adv. Energy Mater. 3 43  Google Scholar Google Scholar[134] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395  Google Scholar Google Scholar[135] Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508  Google Scholar Google Scholar[136] Yin W J, Wei S H, Al-Jassim M M, Yan Y 2011 Appl. Phys. Lett. 99 142109  Google Scholar Google Scholar[137] Brandt R E, Stevanovic V, Ginley D S, Buonassisi T 2015 Mrs Commun. 5 265  Google Scholar Google Scholar[138] Walsh A, Zunger A 2017 Nat. Mater. 16 964  Google Scholar Google Scholar[139] Seok S I, Gratzel M, Park N G 2018 Small 14 1704177  Google Scholar Google Scholar[140] Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509  Google Scholar Google Scholar[141] Gao F, Zhao Y, Zhang X W, You J B 2019 Adv. Energy Mater. 1902650 [142] Ni Z Y, Bao C X, Y. L, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352  Google Scholar Google Scholar[143] Li J L, Yang J, Wu T, Wei S H 2019 J. Mater. Chem. C 7 4230 [144] Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570  Google Scholar Google Scholar[145] Li W, SunY Y, Li I Q, Zhou Z H, Tang J F, Prezhdo O V 2018 J. Am. Chem. Soc. 140 15753  Google Scholar Google Scholar[146] Wang J, Li W, Yin W J 2020 Adv. Mater. 32 1906115  Google Scholar Google Scholar
计量
- 文章访问数: 20305
- PDF下载量: 740
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							 
							 
							



 
							 
							 
							 
							 
							

 
							



 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							