搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直拉硅单晶的机械强度: 锗和氮共掺杂的效应

孙玉鑫 吴德凡 赵统 兰武 杨德仁 马向阳

引用本文:
Citation:

直拉硅单晶的机械强度: 锗和氮共掺杂的效应

孙玉鑫, 吴德凡, 赵统, 兰武, 杨德仁, 马向阳

Mechanical strength of Czochralski silicon crystal: Effects of co-doping germanium and nitrogen

Sun Yu-Xin, Wu De-Fan, Zhao Tong, Lan Wu, Yang De-Ren, Ma Xiang-Yang
PDF
HTML
导出引用
  • 作为集成电路(ICs)的基础材料, 直拉硅(CZ-Si)单晶的机械强度不仅是硅片加工和ICs制造过程中工艺参数设定的重要考虑因素, 而且在很大程度上决定了ICs芯片在测试和封装过程中出现的失效情况. 目前, ICs的器件特征尺寸仍在继续减小, 由此带来的器件集成规模的增长会导致硅衬底中应力水平的提高, 从而使位错更易产生. 因此, 改善直拉硅片的机械强度对于提高ICs的制造成品率具有重要意义. 本文提出在直拉硅单晶中同时掺入锗和氮两种杂质来改善硅片机械强度的思路. 基于此, 对比研究了普通的、单一掺锗的、单一掺氮的、锗和氮共掺的直拉硅单晶的室温硬度及其在600—1200 ℃时的位错滑移行为. 研究结果表明: 1)单一的锗掺杂或氮掺杂以及锗和氮两种杂质的共掺几乎都不影响直拉硅单晶的室温硬度, 意味着上述掺杂没有改变室温下的位错滑移行为. 2)氮掺杂能显著抑制位错在600—1000 ℃的滑移, 但对位错在1100 ℃及以上温度的滑移几乎没有抑制效应; 锗掺杂几乎不能抑制位错在 600—900 ℃的滑移, 但对位错在1000 ℃及以上温度的滑移具有显著的抑制效应. 3)锗和氮两种杂质的共掺对位错在600—1200 ℃的滑移均有显著的抑制效应, 表明氮掺杂和锗掺杂的互补优势得到了很好的结合. 分析认为, 在600—1000 ℃的温度范围内, 氮掺杂导致在位错核心处形成与氮-氧复合体相关的钉扎中心, 从而抑制位错的滑移; 在1000 ℃及以上温度, 锗掺杂导致在位错前沿附近形成锗-氧复合体, 从而阻碍位错的滑移. 总之, 本文的研究表明在直拉硅单晶中同时掺入锗和氮两种杂质可以进一步地增强硅片在ICs制造工艺温度下的机械强度.
    Czochralski (CZ) silicon is a base material for manufacturing integrated circuits (ICs). The mechanical strength of CZ silicon determines the processing limitations and often dominates the issues related to packaging and failure of ICs. With the ever-smaller feature size of ICs, the scaling of device dimensions may indirectly lead to increase the stress in silicon substrate, thus increasing the probability of generating dislocations. Consequently, improving the mechanical strength of CZ silicon is of significance for increasing the manufacturing yield of ICs. In this work, we propose a strategy of co-doping germanium (Ge) impurity and nitrogen (N) impurity into CZ silicon to achieve better mechanical strength. In order to explore the feasibility of such a strategy, we comparatively investigate the room-temperature hardness and dislocation gliding behaviors in the temperature range of 600–1200 ℃ in the conventional CZ silicon, Ge-doped CZ silicon, N-doped CZ silicon, as well as N and Ge co-doped CZ silicon. The significant experimental results are described as follows. 1) Ge-doping, N-doping or co-doping of Ge and N hardly influences the hardness and therefore the dislocation gliding behavior at room temperature. 2) The suppressing effect of N-doping on the dislocation gliding is remarkable at 600–1000 ℃ and becomes weakened at the temperatures higher than 1100 ℃, while Ge-doping hardly affects the dislocation gliding at 600–900 ℃ but exhibits a strong suppressing effect on the dislocation gliding at 1000–1200 ℃. 3) Co-doping Ge and N impurities into CZ silicon can take the complementary advantages of both Ge- and N-doping to suppress the dislocation gliding at 600–1200 ℃. It is believed that N-doping can result in the formation of N-O complex-related pinning agents within the dislocation cores to suppress the dislocation gliding at 600–1000 ℃. For Ge-doping, it is supposed that Ge-O complexes acting as the pinning agents can form near the front of a single dislocation when the temperature is as high as 1000 ℃ and above. In a word, it is verified in this work that co-doping Ge and N into CZ silicon can further improve the mechanical strength at the processing temperatures of ICs fabrication.
      通信作者: 马向阳, mxyoung@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61674126, 51532007, 61721005)资助的课题
      Corresponding author: Ma Xiang-Yang, mxyoung@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674126, 51532007, 61721005)
    [1]

    Hu S M, Patrick W J 1975 J. Appl. Phys. 46 1869Google Scholar

    [2]

    Sumino K, Harada H, Yonenaga I 1980 Jpn. J. Appl. Phys. 19 L49Google Scholar

    [3]

    Yonenaga I, Sumino K, Hoshi K 1984 J. Appl. Phys. 56 2346Google Scholar

    [4]

    Senkader S, Wilshaw P R, Gambaro D, et al. 1999 Solid State Phenom. 70 321Google Scholar

    [5]

    Yang D R, Wang G, Xu J, et al. 2003 Microelectron. Eng. 66 345Google Scholar

    [6]

    Zeng Z D, Chen J H, Zeng Y H, et al. 2011 J. Cryst. Growth 324 93Google Scholar

    [7]

    Shimizu H, Aoshima T 1988 Jpn. J. Appl. Phys. 27 2315Google Scholar

    [8]

    Fischer A, Kissinger G 2007 Appl. Phys. Lett. 91 111911Google Scholar

    [9]

    Goldstein M, Watanabe M 2008 ECS Trans. 16 313Google Scholar

    [10]

    Fahey P M, Mader S R, Stiffler S R, et al. 1992 IBM J. Res. Dev. 36 158Google Scholar

    [11]

    Siegelin F, Stuffer A 2005 Proceedings of the 31st International Symposium for Testing and Failure Analysis San Jose, California, USA, November 6–10, 2005 p59

    [12]

    Yonenaga I 2005 J. Appl. Phys. 98 023517Google Scholar

    [13]

    Lu H M, Yang D R, Li L B, et al. 1998 Phys. Status Solidi A 169 193Google Scholar

    [14]

    Li D S, Yang D R, Que D L 1999 Physica B 273-4 553Google Scholar

    [15]

    Orlov V, Richter H, Fischer A, et al. 2002 Mater. Sci. Semicond. Process. 5 403Google Scholar

    [16]

    Mezhennyi M V, Mil’vidskii M G, Reznik V Y 2002 Phys. Solid State 44 1278Google Scholar

    [17]

    Mezhennyi M V, Mil’vidskii M G, Reznik V Y 2009 J. Surf. Invest. 3 747Google Scholar

    [18]

    Fukuda T, Ohsawa A 1992 Appl. Phys. Lett. 60 1184Google Scholar

    [19]

    Yonenaga I 2005 Mater. Sci. Eng., B 124 293Google Scholar

    [20]

    Chen J H, Yang D R, Ma X Y, et al. 2008 J. Appl. Phys. 103 123521Google Scholar

    [21]

    Taishi T, Huang X M, Yonenaga I, et al. 2002 Mater. Sci. Semicond. Process. 5 409Google Scholar

    [22]

    Schuh C A 2006 Mater. Today 9 32Google Scholar

    [23]

    Jang J I, Lance M J, Wen S Q, et al. 2005 Acta Mater. 53 1759Google Scholar

    [24]

    Juliano T, Gogotsi Y, Domnich V 2003 J. Mater. Res. 18 1192Google Scholar

    [25]

    Sun Y, Zhao T, Lan W, et al. 2019 J. Mater. Sci.- Mater. Electron. 30 3114Google Scholar

    [26]

    Kailer A, Gogotsi Y G, Nickel K G 1997 J. Appl. Phys. 81 3057Google Scholar

    [27]

    Oliver W C, Pharr G M 1992 J. Mater. Res. 7 1564Google Scholar

    [28]

    Imai M, Sumino K 1983 Philos. Mag. A 47 599Google Scholar

    [29]

    Sumino K, Yonenaga I 1993 Phys. Status Solidi A 138 573Google Scholar

    [30]

    Kolar H R, Spence J C H, Alexander H 1996 Phys. Rev. Lett. 77 4031Google Scholar

    [31]

    Patel J R, Testardi L R, Freeland P E 1976 Phys. Rev. B 13 3548Google Scholar

    [32]

    Suzuki T, Yonenaga I, Kirchner H O K 1995 Phys. Rev. Lett. 75 3470Google Scholar

    [33]

    Yang D R, Ma X Y, Fan R X, et al. 2000 Mater. Sci. Eng., B 72 121Google Scholar

    [34]

    von Ammon W, Holzl R, Virbulis J, et al. 2002 J. Cryst. Growth 240 330Google Scholar

    [35]

    Ko ji, Sumino 1999 Metall. Mater. Trans. A 30 1465Google Scholar

    [36]

    Itoh T, Abe T 1988 Appl. Phys. Lett. 53 39Google Scholar

    [37]

    Yonenaga I, Taishi T, Huang X, et al. 2003 J. Appl. Phys. 93 265Google Scholar

    [38]

    Sumino K, Yonenaga I 2002 Solid State Phenom. 85-86 145Google Scholar

    [39]

    McVay G L, Ducharme A R 1973 J. Appl. Phys. 44 1409Google Scholar

    [40]

    Wang L, Yang D R 2009 Physica B 404 58Google Scholar

  • 图 1  (a) CZ, GCZ, NCZ, GNCZ硅单晶样品的典型纳米压痕载荷-位移(P-h)曲线; (b)各样品带有相变特征的部分载荷-位移曲线(为了可视起见, 各曲线作了平移)

    Fig. 1.  (a) Representative P-h curves of CZ, GCZ, NCZ, GNCZ silicon specimens under nanoindentation; (b) segments of the P-h curves with features of phase transformation for CZ, GCZ, NCZ, GNCZ silicon specimens (the curves are deliberately shifted for visual discrimination).

    图 2  CZ, GCZ, NCZ, GNCZ硅样品(a) 纳米压痕硬度和(b)维氏硬度的平均值及其标准差

    Fig. 2.  Average values and standard deviations of the (a) nanoindentation hardness and (b) Vikers hardness of CZ, GCZ, NCZ and GNCZ silicon specimens.

    图 3  (a) 三点弯曲加载单元的结构示意图以及加载时的载荷-位置分布关系的示意图; (b) 普通CZ硅样品在650 ℃三点弯曲加载25 min并经择优腐蚀后某一部分区域的OM照片

    Fig. 3.  (a) Schematic diagram of three-point bending unit and the dependence of load on the position under a given loading; (b) regional OM image of the conventional CZ silicon specimen subjected to three-point bending at 650 ℃ for 25 min and subsequent preferential etching.

    图 4  CZ, GCZ, NCZ, GNCZ样品在600−750 ℃位错滑移的临界切应力

    Fig. 4.  Critical shear stresses of dislocation gliding in CZ, GCZ, NCZ and GNCZ silicon specimens at temperature in the range of 600−750 ℃.

    图 5  施加压痕的CZ, GCZ, NCZ, GNCZ样品经900−1200 ℃退火后得到的位错rosette尺寸的统计结果

    Fig. 5.  Statistical results for the dislocation rosette sizes in the indented CZ, GCZ, NCZ and GNCZ silicon specimens annealed at 900−1200 ℃

    表 1  实验所采用的硅片中的杂质浓度

    Table 1.  Concentrations of impurities in the silicon wafers used.

    硅片杂质
    [Ge]/(1019 cm–3)[N]/(1014 cm–3)[Oi]/(1017 cm–3)
    CZ7.9
    GCZ2.88.1
    NCZ9.08.1
    GNCZ2.08.18.0
    下载: 导出CSV

    表 2  CZ, NCZ, GCZ, GNCZ样品的位错滑移激活能

    Table 2.  Activation energy of dislocation gliding in CZ, NCZ, GCZ and GNCZ silicon specimens.

    CZGCZNCZGNCZ
    Q /eV2.122.102.072.00
    下载: 导出CSV
  • [1]

    Hu S M, Patrick W J 1975 J. Appl. Phys. 46 1869Google Scholar

    [2]

    Sumino K, Harada H, Yonenaga I 1980 Jpn. J. Appl. Phys. 19 L49Google Scholar

    [3]

    Yonenaga I, Sumino K, Hoshi K 1984 J. Appl. Phys. 56 2346Google Scholar

    [4]

    Senkader S, Wilshaw P R, Gambaro D, et al. 1999 Solid State Phenom. 70 321Google Scholar

    [5]

    Yang D R, Wang G, Xu J, et al. 2003 Microelectron. Eng. 66 345Google Scholar

    [6]

    Zeng Z D, Chen J H, Zeng Y H, et al. 2011 J. Cryst. Growth 324 93Google Scholar

    [7]

    Shimizu H, Aoshima T 1988 Jpn. J. Appl. Phys. 27 2315Google Scholar

    [8]

    Fischer A, Kissinger G 2007 Appl. Phys. Lett. 91 111911Google Scholar

    [9]

    Goldstein M, Watanabe M 2008 ECS Trans. 16 313Google Scholar

    [10]

    Fahey P M, Mader S R, Stiffler S R, et al. 1992 IBM J. Res. Dev. 36 158Google Scholar

    [11]

    Siegelin F, Stuffer A 2005 Proceedings of the 31st International Symposium for Testing and Failure Analysis San Jose, California, USA, November 6–10, 2005 p59

    [12]

    Yonenaga I 2005 J. Appl. Phys. 98 023517Google Scholar

    [13]

    Lu H M, Yang D R, Li L B, et al. 1998 Phys. Status Solidi A 169 193Google Scholar

    [14]

    Li D S, Yang D R, Que D L 1999 Physica B 273-4 553Google Scholar

    [15]

    Orlov V, Richter H, Fischer A, et al. 2002 Mater. Sci. Semicond. Process. 5 403Google Scholar

    [16]

    Mezhennyi M V, Mil’vidskii M G, Reznik V Y 2002 Phys. Solid State 44 1278Google Scholar

    [17]

    Mezhennyi M V, Mil’vidskii M G, Reznik V Y 2009 J. Surf. Invest. 3 747Google Scholar

    [18]

    Fukuda T, Ohsawa A 1992 Appl. Phys. Lett. 60 1184Google Scholar

    [19]

    Yonenaga I 2005 Mater. Sci. Eng., B 124 293Google Scholar

    [20]

    Chen J H, Yang D R, Ma X Y, et al. 2008 J. Appl. Phys. 103 123521Google Scholar

    [21]

    Taishi T, Huang X M, Yonenaga I, et al. 2002 Mater. Sci. Semicond. Process. 5 409Google Scholar

    [22]

    Schuh C A 2006 Mater. Today 9 32Google Scholar

    [23]

    Jang J I, Lance M J, Wen S Q, et al. 2005 Acta Mater. 53 1759Google Scholar

    [24]

    Juliano T, Gogotsi Y, Domnich V 2003 J. Mater. Res. 18 1192Google Scholar

    [25]

    Sun Y, Zhao T, Lan W, et al. 2019 J. Mater. Sci.- Mater. Electron. 30 3114Google Scholar

    [26]

    Kailer A, Gogotsi Y G, Nickel K G 1997 J. Appl. Phys. 81 3057Google Scholar

    [27]

    Oliver W C, Pharr G M 1992 J. Mater. Res. 7 1564Google Scholar

    [28]

    Imai M, Sumino K 1983 Philos. Mag. A 47 599Google Scholar

    [29]

    Sumino K, Yonenaga I 1993 Phys. Status Solidi A 138 573Google Scholar

    [30]

    Kolar H R, Spence J C H, Alexander H 1996 Phys. Rev. Lett. 77 4031Google Scholar

    [31]

    Patel J R, Testardi L R, Freeland P E 1976 Phys. Rev. B 13 3548Google Scholar

    [32]

    Suzuki T, Yonenaga I, Kirchner H O K 1995 Phys. Rev. Lett. 75 3470Google Scholar

    [33]

    Yang D R, Ma X Y, Fan R X, et al. 2000 Mater. Sci. Eng., B 72 121Google Scholar

    [34]

    von Ammon W, Holzl R, Virbulis J, et al. 2002 J. Cryst. Growth 240 330Google Scholar

    [35]

    Ko ji, Sumino 1999 Metall. Mater. Trans. A 30 1465Google Scholar

    [36]

    Itoh T, Abe T 1988 Appl. Phys. Lett. 53 39Google Scholar

    [37]

    Yonenaga I, Taishi T, Huang X, et al. 2003 J. Appl. Phys. 93 265Google Scholar

    [38]

    Sumino K, Yonenaga I 2002 Solid State Phenom. 85-86 145Google Scholar

    [39]

    McVay G L, Ducharme A R 1973 J. Appl. Phys. 44 1409Google Scholar

    [40]

    Wang L, Yang D R 2009 Physica B 404 58Google Scholar

  • [1] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [2] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [3] 黄蕾, 刘文亮, 邓超生. 磷、铋掺杂半导体锗光学性质的第一性原理研究. 物理学报, 2018, 67(13): 136101. doi: 10.7498/aps.67.20172680
    [4] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [5] 汪建元, 王尘, 李成, 陈松岩. 硅基锗薄膜选区外延生长研究. 物理学报, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] 高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵. 剪切应变下刃型位错的滑移机理的晶体相场模拟. 物理学报, 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [8] 赵泽钢, 田达晰, 赵剑, 梁兴勃, 马向阳, 杨德仁. 应力预释放对单晶硅片的压痕位错滑移的影响. 物理学报, 2015, 64(20): 208101. doi: 10.7498/aps.64.208101
    [9] 姜金龙, 黄浩, 王琼, 王善民, 魏智强, 杨华, 郝俊英. 沉积温度对钛硅共掺杂类金刚石薄膜生长、结构和力学性能的影响. 物理学报, 2014, 63(2): 028104. doi: 10.7498/aps.63.028104
    [10] 邓胜华, 姜志林. F, Na共掺杂p型ZnO的第一性原理研究. 物理学报, 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [11] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质. 物理学报, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [12] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [13] 徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁. 单晶硅片中的位错在快速热处理过程中的滑移. 物理学报, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [14] 胡小颖, 田宏伟, 宋立军, 朱品文, 乔靓. Li-N, Li-2N共掺p型ZnO的第一性原理研究. 物理学报, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [15] 程亮, 甘章华, 刘威, 赵兴中. (Nb, N)共掺杂锐钛矿电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(23): 237107. doi: 10.7498/aps.61.237107
    [16] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [17] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [18] 刘强, 程新路, 李德华, 杨则金. Al和N共掺对Zn1-xMgxO光学性质的影响. 物理学报, 2010, 59(12): 8829-8835. doi: 10.7498/aps.59.8829
    [19] 刘强, 程新路, 范勇恒, 杨向东. Al和N共掺p型Zn1-xMgxO电子结构的第一性原理计算. 物理学报, 2009, 58(4): 2684-2691. doi: 10.7498/aps.58.2684
    [20] 李荣斌. 硼/氮原子共注入金刚石的原子级研究. 物理学报, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
计量
  • 文章访问数:  7696
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2021-03-02
  • 上网日期:  2021-04-20
  • 刊出日期:  2021-05-05

/

返回文章
返回