搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有机吡啶盐晶体的太赫兹频率上转换探测

刘鹏翔 李伟 郭丽媛 祁峰 庞子博 李惟帆 汪业龙 刘朝阳

引用本文:
Citation:

基于有机吡啶盐晶体的太赫兹频率上转换探测

刘鹏翔, 李伟, 郭丽媛, 祁峰, 庞子博, 李惟帆, 汪业龙, 刘朝阳

Terahertz wave up-conversion detection based on organic nonlinear optical crystals

Liu Peng-Xiang, Li Wei, Guo Li-Yuan, Qi Feng, Pang Zi-Bo, Li Wei-Fan, Wang Ye-Long, Liu Zhao-Yang
PDF
HTML
导出引用
  • 利用激光泵浦国产有机吡啶盐4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐(4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate, DAST)晶体, 通过非线性频率上转换方法实现了室温运转的高灵敏、快响应、宽频段太赫兹探测. 高效生成了近红外上转换光, 采集到其脉冲包络和光谱, 获得了ns量级的时间分辨率, 并换算太赫兹波的频率, 实现了对太赫兹信息的全面表征. 与商用高莱探测器相比, 上转换方法在19 THz频点的探测灵敏度高4个数量级; 在可探测频率3.15—29.82 THz范围内, 响应度普遍高2—3个数量级. 结果表明: 室温下的光泵频率上转换探测方法在时间分辨率和响应度方面远优于传统的热探测器, 极大地提高了差频有源太赫兹系统的动态范围, 使差频源在太赫兹波谱分析和成像等领域具有更大的应用潜力.
    Laser pumped terahertz (THz) wave up-conversion detection with high sensitivity, fast responsivity and wide frequency band is achieved at room temperature, based on home-made organic nonlinear crystals 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate (DAST). Green laser pulses pumped KTiOPO4 optical parametric oscillators are utilized as the sources of dual-wavelength near-infrared (NIR) beams (1.3–1.6 μm, for THz-wave difference frequency generation (DFG)) and a single NIR beam (1.2–1.4 μm, for up-conversion detection). The nonlinear medium for both THz-DFG and detection is DAST (grown by CETC-46). A nanosecond-time-resolved THz pulse is obtained with an InGaAs p-i-n photo-diode. The spectrum of the up-converted NIR light is acquired, which allows us to measure the THz frequency indirectly. The sensitivity (also at room temperature) is 4 orders better at 19 THz than the sensitivity of a commercial thermal detector (Golay Cell). The wide frequency band operation is realized with different sets of band-pass filters, which cover the entire range from 3.15 to 29.82 THz except 8.4 THz of the strong absorption peak of DAST. The dynamic range of a THz source based on DFG can be commonly improved by 2–3 orders, by changing the traditional thermal detector with the up-conversion detection. The presented technology can promote the applications of DFG THz source in the fields of high-resolution spectroscopy and imaging.
      通信作者: 祁峰, qifeng@sia.cn
    • 基金项目: 中国科学院青年创新促进会(批准号: 2019204)、国家自然科学基金(批准号: 61505089, 61605235)和中国科学院机器人与智能制造创新研究院自主项目(批准号: C2019001)资助的课题
      Corresponding author: Qi Feng, qifeng@sia.cn
    • Funds: Project supported by Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2019204), the National Natural Science Foundation of China (Grant Nos. 61505089, 61605235), and the Independent Project of Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences (Grant No. C2019001)
    [1]

    张存林 2008 太赫兹感测与成像 (北京: 国防工业出版社) 第1−5页

    Zhang C 2008 Terahertz Sensing and Imaging (Beijing: National Defense Industry Press) pp1−5 (in Chinese)

    [2]

    Liu Z Y, Qi F, Wang Y L, Liu P X, Li W F 2019 J. Infrared Milli. Terahz. Waves 40 606Google Scholar

    [3]

    Li Y F, Zhang Y T, Li T T, Li M Y, Chen Z L, Li Q Y, Zhao H L, Sheng Q, Shi W, Yao J Q 2020 Nano Lett. 20 5646Google Scholar

    [4]

    鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 物理学报 64 114206Google Scholar

    Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar

    [5]

    Liu P X, Qi F, Li W F, Liu Z Y, Wang Y L, Shi W, Yao J Q 2018 J. Infrared Milli. Terahz. Waves 39 1005Google Scholar

    [6]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [7]

    Shi W, Ding Y J, Fernelius N, Hopkins F K 2006 Appl. Phys. Lett. 88 101101Google Scholar

    [8]

    Ding Y J, Shi W 2006 Sol. State Electron. 50 1128Google Scholar

    [9]

    Ding Y J, Shi W 2006 Opt. Express 14 8311Google Scholar

    [10]

    Khan M J, Chen J C, Liau Z L, Kaushik S 2011 IEEE J. Sel. Top. Quantum Electron. 17 79Google Scholar

    [11]

    Guo R, Ikari T, Minamide H, Ito H 2008 Appl. Phys. Lett. 93 021106Google Scholar

    [12]

    Minamide H, Zhang J, Guo R, Miyamoto K, Ohno S, Ito H 2010 Appl. Phys. Lett. 97 121106Google Scholar

    [13]

    Minamide H, Hayashi S, Nawata K, Taira T, Shikata J, Kawase K 2014 J. Infrared Milli. Terahz. Waves 35 25Google Scholar

    [14]

    Kato M, Tripathi S R, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6425Google Scholar

    [15]

    Tripathi S R, Sugiyama Y, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6433Google Scholar

    [16]

    Takida Y, Nawata K, Suzuki S, Asada M, Minamide H 2017 Opt. Express 25 5389Google Scholar

    [17]

    Qi F, Nawata K, Hayashi S, Notake T, Matsukawa T, Minamide H 2014 Appl. Phys. Lett. 104 031110Google Scholar

    [18]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Opt. Lett. 39 1294Google Scholar

    [19]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Laser Phys. Lett. 11 085403Google Scholar

    [20]

    Fan S, Qi F, Notake T, Nawata K, Takida Y, Matsukawa T, Minamide H 2015 Opt. Express 23 7611Google Scholar

    [21]

    Jiang C Y, Liu J S, Sun B, Wang K J, Yao J Q 2010 J. Opt. 12 045202Google Scholar

    [22]

    Jiang C Y, Liu J S, Sun B, Wang K J, Li S X, Yao J Q 2010 Opt. Express 18 18180Google Scholar

    [23]

    蒋呈阅 2013 博士学位论文 (武汉: 华中科技大学)

    Jiang C Y 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [24]

    武聪, 孟大磊, 庞子博, 徐永宽, 程红娟 2017 压电与声光 39 722Google Scholar

    Wu C, Meng D L, Pang Z B, Xu Y K, Cheng H J 2017 Piezoelectrics & Acoustooptics 39 722Google Scholar

    [25]

    Cunningham P D, Hayden L M 2010 Opt. Express 18 23621

    [26]

    Takahashi Y, Adachi H, Tanuichi T, Takagi M, Hosokawa Y, Onzuka S, Brahadeeswaran S, Yoshimura M, Mori Y, Masuhara H, Sasaki T, Nakanishi H 2006 J. Photochem. Photobiol., A 183 247Google Scholar

    [27]

    Ito H, Suizu K, Yamashita T, Nawahara A, Sato T 2007 Jpn. J. Appl. Phys. 46 7321Google Scholar

    [28]

    Liu P X, Qi F, Pang Z B, Li W F, Lai Z P 2018 J. Phys. D: Appl. Phys. 51 395102Google Scholar

    [29]

    Bosshard Ch, Spreiter R, Degiorgi L, Gunter P 2002 Phys. Rev. B 66 205107Google Scholar

  • 图 1  基于DAST晶体太赫兹上转换探测系统示意图

    Fig. 1.  Schematic diagram of THz-wave up-conversion detection based on DAST crystals.

    图 2  太赫兹上转换探测光电二极管响应信号

    Fig. 2.  The up-converted signal acquired by a photo-diode.

    图 3  上转换探测过程中探测光、差频光及上转换光光谱

    Fig. 3.  Spectra of the detection light, dual-wavelength lights and up-converted light.

    图 4  不同太赫兹能量下的上转换探测响应幅值, 插图为在相应的太赫兹能量下商用高莱探测器的响应幅值

    Fig. 4.  Relationship between THz input energy and photo-diode output. Inset: the output of a Golay Cell at the corresponding THz energy.

    图 5  上转换与热探测获得的差频调谐曲线

    Fig. 5.  Tuning curves of THz-wave difference frequency generation obtained with up-conversion (squares) and thermal detection (circles).

  • [1]

    张存林 2008 太赫兹感测与成像 (北京: 国防工业出版社) 第1−5页

    Zhang C 2008 Terahertz Sensing and Imaging (Beijing: National Defense Industry Press) pp1−5 (in Chinese)

    [2]

    Liu Z Y, Qi F, Wang Y L, Liu P X, Li W F 2019 J. Infrared Milli. Terahz. Waves 40 606Google Scholar

    [3]

    Li Y F, Zhang Y T, Li T T, Li M Y, Chen Z L, Li Q Y, Zhao H L, Sheng Q, Shi W, Yao J Q 2020 Nano Lett. 20 5646Google Scholar

    [4]

    鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志 2015 物理学报 64 114206Google Scholar

    Lu W L, Lou S Q, Wang X, Shen Y, Sheng X Z 2015 Acta Phys. Sin. 64 114206Google Scholar

    [5]

    Liu P X, Qi F, Li W F, Liu Z Y, Wang Y L, Shi W, Yao J Q 2018 J. Infrared Milli. Terahz. Waves 39 1005Google Scholar

    [6]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta Phys. Sin. 65 070702Google Scholar

    [7]

    Shi W, Ding Y J, Fernelius N, Hopkins F K 2006 Appl. Phys. Lett. 88 101101Google Scholar

    [8]

    Ding Y J, Shi W 2006 Sol. State Electron. 50 1128Google Scholar

    [9]

    Ding Y J, Shi W 2006 Opt. Express 14 8311Google Scholar

    [10]

    Khan M J, Chen J C, Liau Z L, Kaushik S 2011 IEEE J. Sel. Top. Quantum Electron. 17 79Google Scholar

    [11]

    Guo R, Ikari T, Minamide H, Ito H 2008 Appl. Phys. Lett. 93 021106Google Scholar

    [12]

    Minamide H, Zhang J, Guo R, Miyamoto K, Ohno S, Ito H 2010 Appl. Phys. Lett. 97 121106Google Scholar

    [13]

    Minamide H, Hayashi S, Nawata K, Taira T, Shikata J, Kawase K 2014 J. Infrared Milli. Terahz. Waves 35 25Google Scholar

    [14]

    Kato M, Tripathi S R, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6425Google Scholar

    [15]

    Tripathi S R, Sugiyama Y, Murate K, Imayama K, Kawase K 2016 Opt. Express 24 6433Google Scholar

    [16]

    Takida Y, Nawata K, Suzuki S, Asada M, Minamide H 2017 Opt. Express 25 5389Google Scholar

    [17]

    Qi F, Nawata K, Hayashi S, Notake T, Matsukawa T, Minamide H 2014 Appl. Phys. Lett. 104 031110Google Scholar

    [18]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Opt. Lett. 39 1294Google Scholar

    [19]

    Qi F, Fan S, Notake T, Nawata K, Matsukawa T, Takida Y, Minamide H 2014 Laser Phys. Lett. 11 085403Google Scholar

    [20]

    Fan S, Qi F, Notake T, Nawata K, Takida Y, Matsukawa T, Minamide H 2015 Opt. Express 23 7611Google Scholar

    [21]

    Jiang C Y, Liu J S, Sun B, Wang K J, Yao J Q 2010 J. Opt. 12 045202Google Scholar

    [22]

    Jiang C Y, Liu J S, Sun B, Wang K J, Li S X, Yao J Q 2010 Opt. Express 18 18180Google Scholar

    [23]

    蒋呈阅 2013 博士学位论文 (武汉: 华中科技大学)

    Jiang C Y 2013 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [24]

    武聪, 孟大磊, 庞子博, 徐永宽, 程红娟 2017 压电与声光 39 722Google Scholar

    Wu C, Meng D L, Pang Z B, Xu Y K, Cheng H J 2017 Piezoelectrics & Acoustooptics 39 722Google Scholar

    [25]

    Cunningham P D, Hayden L M 2010 Opt. Express 18 23621

    [26]

    Takahashi Y, Adachi H, Tanuichi T, Takagi M, Hosokawa Y, Onzuka S, Brahadeeswaran S, Yoshimura M, Mori Y, Masuhara H, Sasaki T, Nakanishi H 2006 J. Photochem. Photobiol., A 183 247Google Scholar

    [27]

    Ito H, Suizu K, Yamashita T, Nawahara A, Sato T 2007 Jpn. J. Appl. Phys. 46 7321Google Scholar

    [28]

    Liu P X, Qi F, Pang Z B, Li W F, Lai Z P 2018 J. Phys. D: Appl. Phys. 51 395102Google Scholar

    [29]

    Bosshard Ch, Spreiter R, Degiorgi L, Gunter P 2002 Phys. Rev. B 66 205107Google Scholar

计量
  • 文章访问数:  5472
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2020-12-07
  • 上网日期:  2021-02-23
  • 刊出日期:  2021-03-05

/

返回文章
返回