搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯亚胺改性介孔氧化硅载体孔结构的调控机理

王荣 杨静 张涛 于润升 董俊才 张鹏 曹兴忠 王宝义 尹昊

引用本文:
Citation:

聚乙烯亚胺改性介孔氧化硅载体孔结构的调控机理

王荣, 杨静, 张涛, 于润升, 董俊才, 张鹏, 曹兴忠, 王宝义, 尹昊

Mechanism of regulating pore structure of polyethyleneimine modified mesoporous silica foam

Wang Rong, Yang Jing, Zhang Tao, Yu Run-Sheng, Dong Jun-Cai, Zhang Peng, Cao Xing-Zhong, Wang Bao-Yi, Yin Hao
PDF
HTML
导出引用
  • 以三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(P123)为模板, 硅酸四乙酯(TEOS, C8H20O4Si)为硅源合成了比表面积高达712.5 m2/g, 孔体积为2.44 cm3/g的新型介孔氧化硅载体(MCF). 通过正电子湮没寿命谱(PALS)以及常规表征手段; 例如N2吸附脱附、透射电子显微镜、热重分析、傅里叶变换红外光谱等系统研究了聚乙烯亚胺(PEI)改性MCF对纳米尺度孔结构的影响. 结果表明, 合成的MCF具有明显的无序介孔结构, 孔与孔之间通过窗口相互连接形成了一个连续的、具有良好热稳定性的多孔通道网络, 同时可以直观看到有机胺PEI已被成功引入到MCF通道中. 为了更全面地评估材料孔径的变化情况, 通过高灵敏度、可探测亚纳米量级的正电子湮没技术研究正电子在PEI负载MCF中的湮没机制, 发现存在τ3τ4两个长寿命分量, 表明样品中存在微孔和介孔. 同时由于PEI分子的引入, 导致τ3τ4呈明显的下降趋势, 之后利用正电子在纯气体中的湮没率公式校正PALS所测得的寿命来计算所得孔尺寸, 发现孔尺寸随着有机分子PEI的填充而逐渐减小, 这将为探究聚乙烯亚胺改性MCF孔结构的调控机理以及有机分子改性介孔分子筛材料体系的孔结构表征提供新的思路.
    A novel mesoporous silica foam (MCF) with a specific surface area of 712.5 m2/g and a pore volume of 2.44 cm3/g is synthesized by using triblock copolymer poly (ethylene oxide, polypropylene oxide and ethylene oxide, P123) as template and TEOS (C8H20O4Si) as silicon source. The effect of polyethylenimide (PEI) modified MCF on nanoscale pore structure is studied by positron annihilation lifetime spectroscopy (PALS) and conventional characterization methods, such as N2 adsorption desorption, transmission electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy. The results show that the synthesized MCF has an obvious disordered mesoporous structure, and a continuous porous network with window connection between the pores is formed. Meanwhile, it can be seen directly that PEI is successfully introduced into MCF pore channels. In order to evaluate the pore size and its distribution more comprehensively, the mechanism of positron annihilation which is highly sensitive to nanometer scale open volumes in PEI loaded MCF is studied. It is found that there are two long life components τ3 and τ4, indicating the micropores and mesopores co-existing in the sample. Furthermore, the introduction of PEI molecules results in a significant decrease in τ3 and τ4, and the lifetime values are then corrected by using the positron annihilation rate formula in pure gas to calculate the pore size. The results show that the pore size gradually decreases with the filling of the organic molecule PEI. This provides a new insight into the mechanism of regulating the pore structure of MCF by polyethyleneimine modification, as well as the characterization of pore structure in organic-modified mesoporous molecular sieves.
      通信作者: 杨静, yangjing10@xust.edu.cn ; 于润升, yursh@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12275299, 12075189)、国家重点基础研究发展计划(批准号: 2019YFA0210002)和中国博士后科学基金(批准号: 2018M643813XB)资助的课题.
      Corresponding author: Yang Jing, yangjing10@xust.edu.cn ; Yu Run-Sheng, yursh@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275299, 12075189), the National Basic Research Program of China (Grant No. 2019YFA0210002), and the China Postdoctoral Science Foundation (Grant No. 2018M643813XB).
    [1]

    Song C F, Liu Q L, Ji N, Deng S, Zhao J, Li Y, Song Y J, Li H L 2018 Renewable Sustainable Energy Rev. 82 215Google Scholar

    [2]

    Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W 2002 Energy Fuels 16 1463Google Scholar

    [3]

    Ma X L, Wang X X, Song C S 2009 J. Am. Chem. Soc. 131 5777Google Scholar

    [4]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548Google Scholar

    [5]

    Xiong H F, Zhang Y H, Wang S G, Liew K Y, Li J L 2008 J. Phys. Chem. A 112 9706Google Scholar

    [6]

    Liu H, Wang G X, Liu J, Qiao S Z, Ahn H 2011 J. Mater. Chem. A 21 3046Google Scholar

    [7]

    Zhang Z Y, Zuo F, Feng P Y 2010 J. Mater. Chem. A 20 2206Google Scholar

    [8]

    Lu B W, Kawamoto K 2013 J. Environ. Chem. Eng. 1 300Google Scholar

    [9]

    Belmabkhout Y, Serna-Guerrero R, Sayari A 2010 Ind. Eng. Chem. Res. 49 359Google Scholar

    [10]

    Kim S, Ida J, Guliants V V, Lin Y S 2005 J. Phys. Chem. B 109 6287Google Scholar

    [11]

    Wang L, Ma L, Wang A, Liu Q, Zhang T 2007 Chin. J. Catal. 28 805Google Scholar

    [12]

    Zheng F, Tran D N, Busche B J, Fryxell G E, Addleman R S, Zemanian T S, Aardahl C L 2005 Ind. Eng. Chem. Res 44 3099Google Scholar

    [13]

    Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P 2008 Microporous Mesoporous Mater. 116 358Google Scholar

    [14]

    Mosquera M J, Pozo J, Esquivias L, Rivas T, Silva B 2002 J. Non-Cryst. Solids 311 185Google Scholar

    [15]

    Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193

    [16]

    Zaleski R 2015 Nukleonika 60 795Google Scholar

    [17]

    Schmidt-Winkel P, Lukens W W, Yang P, Margolese D I, Lettow J S, Ying J Y, Stucky G D 2000 Chem. Mater. 12 686Google Scholar

    [18]

    Schmidt-Winkel P, Lukens W W, Zhao D, Yang P, Chmelka B F, Stucky G D 1999 J. Am. Chem. Soc. 121 254Google Scholar

    [19]

    Song T, Zhang P, Zhang C, Gong L L, Cao X Z, Wang B Y, Yu R S, Zhou W 2022 Microporous Mesoporous Mater. 334 111761Google Scholar

    [20]

    Chen Q j, Fan F C, Long D H, Liu X J, Lian X Y, Qiao W M, Ling L C 2010 Ind. Eng. Chem. Res. 49 11408Google Scholar

    [21]

    Ouyang J, Zheng C H, Gu W, Zhang Y, Yang H M, Suib S L 2018 Chem. Eng. J. 337 342Google Scholar

    [22]

    Klinthong W, Huang C H, Tan C S 2016 Ind. Eng. Chem. Res. 55 6481Google Scholar

    [23]

    Ghoul M, Bacquet M, Crini G, Morcellet M 2003 J. Appl. Polym. Sci. 90 799Google Scholar

    [24]

    Saito H, Hyodo T 2003 Phys. Rev. Lett. 90 193401Google Scholar

    [25]

    Wiertel M, Surowiec Z, Budzyński M, Gac W 2013 Nukleonika 58 245

    [26]

    尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义 2023 物理学报 72 114101Google Scholar

    Yin H, Song T, Peng X G, Zhang P, Yu R S, Chen Z, Cao X Z, Wang B Y 2023 Acta Phys. Sin. 72 114101Google Scholar

    [27]

    Dull T L, Frieze W E, Gidley D W, Sun J N, Yee A F 2001 J. Phys. Chem. B 105 4657Google Scholar

  • 图 1  (a) PEI改性前后MCF的N2吸附-脱附等温线; (b) 由吸附曲线得到的孔尺寸; (c) 由脱附曲线得到的窗口尺寸; (d) P/P0 = 0.99时, 采用BET方程和单点吸附法计算比表面积和孔体积

    Fig. 1.  (a) N2 adsorption-desorption isotherms of MCF before and after PEI modification; (b) cell size from adsorption curve; (c) window dimensions obtained from desorption curves; (d) specific surface area and pore volume calculated by BET equation and single point adsorption measurement at P/P0 = 0.99.

    图 2  TEM图像 (a) MCF; (b) MCF-60

    Fig. 2.  TEM images: (a) MCF; (b) MCF-60.

    图 3  (a) 不同样品的TGA曲线; (b) 样品中的实际PEI含量

    Fig. 3.  (a) TGA curves of different samples; (b) actual PEI content in the studied samples.

    图 4  经过不同含量 PEI 溶液浸渍后的样品的傅里叶变换红外光谱图

    Fig. 4.  Fourier transform infrared spectra of samples impregnated with PEI solution of different contents.

    图 5  不同含量 PEI浸渍前后样品的正电子湮没寿命谱图

    Fig. 5.  Positron annihilation lifetime spectra of samples with different PEI contents before and after immersion.

    图 6  (a) 不同样品中o-Ps的寿命; (b) 相对强度对PEI含量的依赖关系; (c) 校正寿命后得到的样品孔尺寸随PEI含量变化示意图

    Fig. 6.  (a) Lifetime of o-Ps in different samples; (b) dependence of relative intensity on PEI weight content; (c) diagram of sample hole size changing with PEI weight content obtained after life correction.

  • [1]

    Song C F, Liu Q L, Ji N, Deng S, Zhao J, Li Y, Song Y J, Li H L 2018 Renewable Sustainable Energy Rev. 82 215Google Scholar

    [2]

    Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W 2002 Energy Fuels 16 1463Google Scholar

    [3]

    Ma X L, Wang X X, Song C S 2009 J. Am. Chem. Soc. 131 5777Google Scholar

    [4]

    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D 1998 Science 279 548Google Scholar

    [5]

    Xiong H F, Zhang Y H, Wang S G, Liew K Y, Li J L 2008 J. Phys. Chem. A 112 9706Google Scholar

    [6]

    Liu H, Wang G X, Liu J, Qiao S Z, Ahn H 2011 J. Mater. Chem. A 21 3046Google Scholar

    [7]

    Zhang Z Y, Zuo F, Feng P Y 2010 J. Mater. Chem. A 20 2206Google Scholar

    [8]

    Lu B W, Kawamoto K 2013 J. Environ. Chem. Eng. 1 300Google Scholar

    [9]

    Belmabkhout Y, Serna-Guerrero R, Sayari A 2010 Ind. Eng. Chem. Res. 49 359Google Scholar

    [10]

    Kim S, Ida J, Guliants V V, Lin Y S 2005 J. Phys. Chem. B 109 6287Google Scholar

    [11]

    Wang L, Ma L, Wang A, Liu Q, Zhang T 2007 Chin. J. Catal. 28 805Google Scholar

    [12]

    Zheng F, Tran D N, Busche B J, Fryxell G E, Addleman R S, Zemanian T S, Aardahl C L 2005 Ind. Eng. Chem. Res 44 3099Google Scholar

    [13]

    Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P 2008 Microporous Mesoporous Mater. 116 358Google Scholar

    [14]

    Mosquera M J, Pozo J, Esquivias L, Rivas T, Silva B 2002 J. Non-Cryst. Solids 311 185Google Scholar

    [15]

    Brandt W, Paulin R 1968 Phys. Rev. Lett. 21 193

    [16]

    Zaleski R 2015 Nukleonika 60 795Google Scholar

    [17]

    Schmidt-Winkel P, Lukens W W, Yang P, Margolese D I, Lettow J S, Ying J Y, Stucky G D 2000 Chem. Mater. 12 686Google Scholar

    [18]

    Schmidt-Winkel P, Lukens W W, Zhao D, Yang P, Chmelka B F, Stucky G D 1999 J. Am. Chem. Soc. 121 254Google Scholar

    [19]

    Song T, Zhang P, Zhang C, Gong L L, Cao X Z, Wang B Y, Yu R S, Zhou W 2022 Microporous Mesoporous Mater. 334 111761Google Scholar

    [20]

    Chen Q j, Fan F C, Long D H, Liu X J, Lian X Y, Qiao W M, Ling L C 2010 Ind. Eng. Chem. Res. 49 11408Google Scholar

    [21]

    Ouyang J, Zheng C H, Gu W, Zhang Y, Yang H M, Suib S L 2018 Chem. Eng. J. 337 342Google Scholar

    [22]

    Klinthong W, Huang C H, Tan C S 2016 Ind. Eng. Chem. Res. 55 6481Google Scholar

    [23]

    Ghoul M, Bacquet M, Crini G, Morcellet M 2003 J. Appl. Polym. Sci. 90 799Google Scholar

    [24]

    Saito H, Hyodo T 2003 Phys. Rev. Lett. 90 193401Google Scholar

    [25]

    Wiertel M, Surowiec Z, Budzyński M, Gac W 2013 Nukleonika 58 245

    [26]

    尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义 2023 物理学报 72 114101Google Scholar

    Yin H, Song T, Peng X G, Zhang P, Yu R S, Chen Z, Cao X Z, Wang B Y 2023 Acta Phys. Sin. 72 114101Google Scholar

    [27]

    Dull T L, Frieze W E, Gidley D W, Sun J N, Yee A F 2001 J. Phys. Chem. B 105 4657Google Scholar

  • [1] 尹昊, 宋通, 彭雄刚, 张鹏, 于润升, 陈喆, 曹兴忠, 王宝义. 聚乙烯亚胺改性介孔二氧化硅SBA-15微观结构的小角X射线散射及正电子湮没谱学研究. 物理学报, 2023, 72(11): 114101. doi: 10.7498/aps.72.20230265
    [2] 何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣. 介孔尺度及结构对混合硝酸盐热输运特性的影响. 物理学报, 2022, 71(3): 030503. doi: 10.7498/aps.71.20211276
    [3] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响. 物理学报, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [4] 李裕, 罗江山, 王柱, 杨蒙生, 邢丕峰, 易勇, 雷海乐. 铝纳米晶的正电子湮没研究. 物理学报, 2014, 63(24): 247803. doi: 10.7498/aps.63.247803
    [5] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [6] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质. 物理学报, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [7] 黄丛亮, 冯妍卉, 张欣欣, 王戈, 李静. 介孔材料MCM-41的导热研究. 物理学报, 2011, 60(11): 114401. doi: 10.7498/aps.60.114401
    [8] 许红霞, 郝颖萍, 韩荣典, 翁惠民, 杜淮江, 叶邦角. 纳米Fe3 O4 颗粒的正电子湮没谱学研究. 物理学报, 2011, 60(6): 067803. doi: 10.7498/aps.60.067803
    [9] 祁宁, 王元为, 王栋, 王丹丹, 陈志权. Co掺杂纳米ZnO微结构的正电子湮没研究. 物理学报, 2011, 60(10): 107805. doi: 10.7498/aps.60.107805
    [10] 王君君, 龚静, 宫振丽, 闫晓丽, 高舒, 王波. 聚合物纳米复合电解质(PEO)8-ZnO-LiClO4微结构及电导率研究. 物理学报, 2011, 60(12): 127803. doi: 10.7498/aps.60.127803
    [11] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征. 物理学报, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [12] 房振乾, 胡 明, 张 伟, 张绪瑞. 基于微拉曼光谱技术的氧化介孔硅热导率研究. 物理学报, 2008, 57(1): 103-110. doi: 10.7498/aps.57.103
    [13] 林良书, 薛燕陵, 蒋器成, 张晓敏, 吴 鹏, 刘月明. Er3+在二氧化硅介孔分子筛中的高效率发光及其分析. 物理学报, 2008, 57(9): 5989-5995. doi: 10.7498/aps.57.5989
    [14] 张宏俊, 王 栋, 陈志权, 王少阶, 徐友明, 罗锡辉. MoO3/Al2O3催化剂中Mo分散的正电子研究. 物理学报, 2008, 57(11): 7333-7337. doi: 10.7498/aps.57.7333
    [15] 叶崇志, 廖晶莹, 杨培志, 谢建军, 罗 澜, 曹顿华. F, Y双掺钨酸铅晶体的发光性能和微观缺陷. 物理学报, 2006, 55(4): 1947-1952. doi: 10.7498/aps.55.1947
    [16] 梁 玲, 顾 牡, 段 勇, 马晓辉, 刘峰松, 吴湘惠, 邱隆清, 陈铭南, 廖晶莹, 沈定中, 张 昕, 宫 波, 薛炫萍, 徐炜新, 王景成. +3价离子掺杂钨酸铅晶体发光性能和微观缺陷的研究. 物理学报, 2004, 53(2): 543-549. doi: 10.7498/aps.53.543
    [17] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, 2000, 49(10): 2007-2010. doi: 10.7498/aps.49.2007
    [18] 马莉, 陈志权, 王少阶, 彭治林, 罗锡辉. 用正电子湮没技术研究USY沸石的“二次孔”结构. 物理学报, 1997, 46(11): 2267-2273. doi: 10.7498/aps.46.2267
    [19] 用正电子湮没寿命谱研究凝聚态甲烷的温度关系. 物理学报, 1990, 39(7): 106-111. doi: 10.7498/aps.39.106
    [20] 何元金, 曹必松. 正电子湮没寿命谱的傅里叶变换分析法. 物理学报, 1984, 33(12): 1745-1752. doi: 10.7498/aps.33.1745
计量
  • 文章访问数:  1799
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-05-31
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回