Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Periodic orbits of diffusionless Lorenz system

Dong Cheng-Wei

Periodic orbits of diffusionless Lorenz system

Dong Cheng-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The strange attractor of a chaotic system is composed of numerous periodic orbits densely covered. The periodic orbit is the simplest invariant set except for the fixed point in the nonlinear dynamic system, it not only reflects all the characteristics of the chaotic motion, but also is closely related to the amplitude generation and change of chaotic system. Therefore, it is of great significance to obtain the periodic orbits in order to analyze the dynamical behaviors of the complex system. In this paper, we study the periodic orbits of the diffusionless Lorenz equations which are derived in the limit of high Rayleigh and Prandtl numbers. A new approach to establishing one-dimensional symbolic dynamics is proposed, and the periodic orbits based on a topological structure are systematically calculated. We use the variational method to locate the cycles, which is proposed to explore the periodic orbits in high-dimensional chaotic systems. The method not only preserves the robustness characteristics of most of other methods, such as the Newton descent method and multipoint shooting method, but it also has the characteristics of fast convergence when the search process is close to the real cycle in practice. In order to apply the method, a rough loop guess must be made first based on the entire topology for the cycle to be searched, and then the variational algorithm will bring the initial loop guess to evolving toward the real periodic orbit in the system. In the calculations, the Newton descent method is used to achieve stability. Two cycles can be used as basic building blocks for initialization, searching for more complex cycles with multiple circuits around the two fixed points requires more delicate initial conditions; otherwise, it will probably lead to nonconvergence. We can initialize the loop guess for longer cycles constructed by cutting and gluing the short, known cycles. For this system, such a method yields quite a good systematic initial guess for longer cycles. Even if we deform the orbit manually into a closed loop, the variational method still shows its powerfulness for good convergence. The topological classification based on the entire orbital structure is shown to be effective. Furthermore, the deformation of periodic orbits with the change of parameters is discussed, which provides a route to the periods of cycles. The present research may provide a method of performing systematic calculation and classification of periodic orbits in other similar chaotic systems.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647085, 11647086, 11747106), the Applied Basic Research Foundation of Shanxi Province, China (Grant No. 201701D121011), and the Natural Science Research Fund of North University of China (Grant No. XJJ2016036).
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 1789

    [5]

    Schrier G V D, Maas L R M 2000 Physica D 141 19

    [6]

    Dwivedi A, Mittal A K, Dwivedi S 2012 Iet Commun. 6 2016

    [7]

    Pehlivan I, Uyaro Y 2007 Iet Commun. 1 1015

    [8]

    Xu Y, Gu R, Zhang H, Li D 2012 Int. J. Bifurcation Chaos 22 1250088

    [9]

    He S, Sun K, Banerjee S 2016 Eur. Phys. J. Plus 131 254

    [10]

    Huang D 2003 Phys. Lett. A 309 248

    [11]

    Wei Z, Yang Q 2009 Comput. Math. Appl. 58 1979

    [12]

    Wang Z, Li Y X, Xi X J, Wang X F 2014 Adv. Mater. Res. 905 651

    [13]

    Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing) p301

    [14]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 325

    [15]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 361

    [16]

    Cvitanovi P, Artuso R, Mainieri R, Tanner G, Vattay G, Whelan N, Wirzba A 2012 Chaos: Classical and Quantum (Copenhagen: Niels Bohr Institute) p395

    [17]

    Hao B L, Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific) p13

    [18]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217

    [19]

    Press W H, Teukolsky S A, Veterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77 The Art of Scientific Computing (New York: Cambridge) p34

    [20]

    Dong C, Lan Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2140

    [21]

    Dong C 2018 Mod. Phys. Lett. B 32 1850155

    [22]

    Dong C 2018 Int. J. Mod. Phys. B 32 1850227

    [23]

    Dong C 2018 Chin. Phys. B 27 080501

    [24]

    Dong C 2018 Europhys. Lett. 123 20005

    [25]

    Dong C, Wang P, Du M, Uzer T, Lan Y 2016 Mod. Phys. Lett. B 30 1650183

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rössler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    Lü J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 1789

    [5]

    Schrier G V D, Maas L R M 2000 Physica D 141 19

    [6]

    Dwivedi A, Mittal A K, Dwivedi S 2012 Iet Commun. 6 2016

    [7]

    Pehlivan I, Uyaro Y 2007 Iet Commun. 1 1015

    [8]

    Xu Y, Gu R, Zhang H, Li D 2012 Int. J. Bifurcation Chaos 22 1250088

    [9]

    He S, Sun K, Banerjee S 2016 Eur. Phys. J. Plus 131 254

    [10]

    Huang D 2003 Phys. Lett. A 309 248

    [11]

    Wei Z, Yang Q 2009 Comput. Math. Appl. 58 1979

    [12]

    Wang Z, Li Y X, Xi X J, Wang X F 2014 Adv. Mater. Res. 905 651

    [13]

    Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (New York: Perseus Books Publishing) p301

    [14]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 325

    [15]

    Artuso R, Aurell E, Cvitanović P 1990 Nonlinearity 3 361

    [16]

    Cvitanovi P, Artuso R, Mainieri R, Tanner G, Vattay G, Whelan N, Wirzba A 2012 Chaos: Classical and Quantum (Copenhagen: Niels Bohr Institute) p395

    [17]

    Hao B L, Zheng W M 1998 Applied Symbolic Dynamics and Chaos (Singapore: World Scientific) p13

    [18]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217

    [19]

    Press W H, Teukolsky S A, Veterling W T, Flannery B P 1992 Numerical Recipes in Fortran 77 The Art of Scientific Computing (New York: Cambridge) p34

    [20]

    Dong C, Lan Y 2014 Commun. Nonlinear Sci. Numer. Simul. 19 2140

    [21]

    Dong C 2018 Mod. Phys. Lett. B 32 1850155

    [22]

    Dong C 2018 Int. J. Mod. Phys. B 32 1850227

    [23]

    Dong C 2018 Chin. Phys. B 27 080501

    [24]

    Dong C 2018 Europhys. Lett. 123 20005

    [25]

    Dong C, Wang P, Du M, Uzer T, Lan Y 2016 Mod. Phys. Lett. B 30 1650183

  • [1] Shen Min-Fen, Lin Lan-Xin, Li Xiao-Yan, Chang Chun-Qi. Initial condition estimate of coupled map lattices system based on symbolic dynamics. Acta Physica Sinica, 2009, 58(5): 2921-2929. doi: 10.7498/aps.58.2921
    [2] Chen Chong, Ding Jiong, Zhang Hong, Chen Zhuo. Study of an integrate-and-discharge model with symbolic dynamics. Acta Physica Sinica, 2013, 62(14): 140502. doi: 10.7498/aps.62.140502
    [3] Xu Hong-Mei, Jin Yong-Gao, Jin Jing-Xuan. Time irreversibility analysis of converter based on symbolic dynamics. Acta Physica Sinica, 2014, 63(13): 130502. doi: 10.7498/aps.63.130502
    [4] Xiao Fang-Hong, Yan Gui-Rong, Han Yu-Hang. A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences. Acta Physica Sinica, 2004, 53(9): 2876-2881. doi: 10.7498/aps.53.2876
    [5] Ding Jiong, Zhang Hong, Tong Qin-Ye. A probable explanation for bat's auditory nervous system identifying inserts in the complex surrounding. Acta Physica Sinica, 2012, 61(15): 150505. doi: 10.7498/aps.61.150505
    [6] Xiong Zhuang, Wang Zhen-Xin, Naoum C. Bacalis. Accuracy study for excited atoms (ions):A new variational method. Acta Physica Sinica, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [7] Li Qun, Chen Qian, Chong Jing. Variational study of the 2DEG wave function in InAlN/GaN heterostructures. Acta Physica Sinica, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [8] Liu Xiao-Feng, Yu Wen-Li. A symbolic dynamics approach to the complexity analysis of event-related potentials. Acta Physica Sinica, 2008, 57(4): 2587-2594. doi: 10.7498/aps.57.2587
    [9] Wang Kai, Pei Wen-Jiang, Xia Hai-Shan, He Zhen-Ya. Initial condition estimation from coupled map lattices based on symbolic vector dynamics. Acta Physica Sinica, 2007, 56(7): 3766-3770. doi: 10.7498/aps.56.3766
    [10] Song Ai-Ling, Huang Xiao-Lin, Si Jun-Feng, Ning Xin-Bao. Optimum parameters setting in symbolic dynamics of heart rate variability analysis. Acta Physica Sinica, 2011, 60(2): 020509. doi: 10.7498/aps.60.020509
    [11] Li Zhi-Qiang, Wang Yue-Ming. One-dimensional spin-orbit coupling Bose gases with harmonic trapping. Acta Physica Sinica, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [12] Yang Xiao-Yong, Xue Hai-Bin, Liang Jiu-Qing. Spin coherent-state transformation and analytical solutions of ground-state based on variational-method for spin-Bose models. Acta Physica Sinica, 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [13] Chen Yuan-Yuan, Yang Pan-Jie, Zhang Wei-Zhi, Yan Xiao-Na. A powerful method to analyze of photonic crystals: mixed variational method. Acta Physica Sinica, 2016, 65(12): 124206. doi: 10.7498/aps.65.124206
    [14] Dai Ji-Hui, Guo Qi. Optical beams in nonlocal nonlinear media: A variational solution of the Laguerre-Gauss form. Acta Physica Sinica, 2008, 57(8): 5001-5006. doi: 10.7498/aps.57.5001
    [15] Bai Dong-Feng, Guo Qi, Hu Wei. Variational investigation of Hermite-Gaussian beam propagation in nonlocal Kerr media. Acta Physica Sinica, 2008, 57(9): 5684-5689. doi: 10.7498/aps.57.5684
    [16] Dai Ji-Hui, Guo Qi. Rotating azimuthon in strongly nonlocal nonlinear media. Acta Physica Sinica, 2009, 58(3): 1752-1757. doi: 10.7498/aps.58.1752
    [17] Kang Yan-Mei, Xu Jian-Xue, Xie Yong. Relaxation rate and stochastic resonance of a single-mode nonlinear optical syst em. Acta Physica Sinica, 2003, 52(11): 2712-2717. doi: 10.7498/aps.52.2712
    [18] Tong Zhi, Wei Huai, Jian Shui-Sheng. Optimal design of distributed Raman amplifiers employed in long-haul optical transmission systems. Acta Physica Sinica, 2006, 55(4): 1873-1882. doi: 10.7498/aps.55.1873
    [19] Huang Bo-Wen, Wang De-Yun. . Acta Physica Sinica, 2002, 51(6): 1163-1166. doi: 10.7498/aps.51.1163
    [20] Wang Xue-Mei, Zhang Bo, Qiu Dong-Yuan, Chen Liang-Gang. Symbolic time series characterization and block entropy analysis of DC-DC converters. Acta Physica Sinica, 2008, 57(10): 6112-6119. doi: 10.7498/aps.57.6112
  • Citation:
Metrics
  • Abstract views:  863
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  23 August 2018
  • Accepted Date:  22 October 2018
  • Published Online:  20 December 2019

Periodic orbits of diffusionless Lorenz system

  • Department of Physics, School of Science, North University of China, Taiyuan 030051, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant Nos. 11647085, 11647086, 11747106), the Applied Basic Research Foundation of Shanxi Province, China (Grant No. 201701D121011), and the Natural Science Research Fund of North University of China (Grant No. XJJ2016036).

Abstract: The strange attractor of a chaotic system is composed of numerous periodic orbits densely covered. The periodic orbit is the simplest invariant set except for the fixed point in the nonlinear dynamic system, it not only reflects all the characteristics of the chaotic motion, but also is closely related to the amplitude generation and change of chaotic system. Therefore, it is of great significance to obtain the periodic orbits in order to analyze the dynamical behaviors of the complex system. In this paper, we study the periodic orbits of the diffusionless Lorenz equations which are derived in the limit of high Rayleigh and Prandtl numbers. A new approach to establishing one-dimensional symbolic dynamics is proposed, and the periodic orbits based on a topological structure are systematically calculated. We use the variational method to locate the cycles, which is proposed to explore the periodic orbits in high-dimensional chaotic systems. The method not only preserves the robustness characteristics of most of other methods, such as the Newton descent method and multipoint shooting method, but it also has the characteristics of fast convergence when the search process is close to the real cycle in practice. In order to apply the method, a rough loop guess must be made first based on the entire topology for the cycle to be searched, and then the variational algorithm will bring the initial loop guess to evolving toward the real periodic orbit in the system. In the calculations, the Newton descent method is used to achieve stability. Two cycles can be used as basic building blocks for initialization, searching for more complex cycles with multiple circuits around the two fixed points requires more delicate initial conditions; otherwise, it will probably lead to nonconvergence. We can initialize the loop guess for longer cycles constructed by cutting and gluing the short, known cycles. For this system, such a method yields quite a good systematic initial guess for longer cycles. Even if we deform the orbit manually into a closed loop, the variational method still shows its powerfulness for good convergence. The topological classification based on the entire orbital structure is shown to be effective. Furthermore, the deformation of periodic orbits with the change of parameters is discussed, which provides a route to the periods of cycles. The present research may provide a method of performing systematic calculation and classification of periodic orbits in other similar chaotic systems.

Reference (25)

Catalog

    /

    返回文章
    返回